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PREFACE

This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology,
as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such
as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in
situ, are also described. Some basic principles of applied mechanics that are frequently used are presented in Appendices. The subdivision into
chapters is such that one chapter can be treated in a single lecture, approximately.

Comments of students and other users on the material in earlier versions of this book have been implemented in the present version, and
errors have been corrected. Remaining errors are the author’s responsibility, of course, and all comments will be appreciated.

An important contribution to the production of the printed edition, and to this screen edition, has been the typesetting program TgEX, by
Donald Knuth, in the ETEXimplementation by Leslie Lamport. Most of the figures have been constructed in I¥TEX, using the P[CTEXmacros.

The logo was produced by Professor G. de Josselin de Jong, who played an important role in developing soil mechanics as a branch of science,
and who taught me soil mechanics.

Since 2001 the English version of this book has been made available on the internet, on the website <http://geo.verruijt.net>. Several users,
from all over the world, have been kind enough to send me their comments or their suggestions for corrections or improvements. In recent
versions of the screenbook it has also been attempted to incorporate the figures better into the text, using the macro wrapfigure, and colors. In
this way the appearance of many pages seems to have been improved.

Upon the suggestion of Prof. Emmanuel Detournay of the University of Minnesota, the problems at the end of chapters have been supple-
mented in the 2010 version by worked examples, as a further aid to students. Additional sets of exercises and problems are available in the file
SoilMex.ZIP.

Delft, July 2010 A. Verruijt

a.verruijt@verruijt.net



Chapter 1

INTRODUCTION

1.1 The discipline

Soil mechanics is the science of equilibrium and motion of soil bodies. Here soil is understood to be the weathered material in the upper layers of
the earth’s crust. The non-weathered material in this crust is denoted as rock, and its mechanics is the discipline of rock mechanics. In general
the difference between soil and rock is roughly that in soils it is possible to dig a trench with simple tools such as a spade or even by hand. In
rock this is impossible, it must first be splintered with heavy equipment such as a chisel, a hammer or a mechanical drilling device. The natural
weathering process of rock is that under the long-term influence of sun, rain and wind, it degenerates into stones. This process is stimulated by
fracturing of rock bodies by freezing and thawing of the water in small crevices in the rock. The coarse stones that are created in mountainous
areas are transported downstream by gravity, often together with water in rivers. By internal friction the stones are gradually reduced in size,
so that the material becomes gradually finer: gravel, sand and eventually silt. In flowing rivers the material may be deposited, the coarsest
material at high velocities, but the finer material only at very small velocities. This means that gravel will be found in the upper reaches of a
river bed, and finer material such as sand and silt in the lower reaches.

The Netherlands is located in the lower reaches of the rivers Rhine and Meuse. In general the soil consists of weathered material, mainly
sand and clay. This material has been deposited in earlier times in the delta formed by the rivers. Much fine material has also been deposited
by flooding of the land by the sea and the rivers. This process of sedimentation occurs in many areas in the world, such as the deltas of the
Nile and the rivers in India and China. In the Netherlands it has come to an end by preventing the rivers and the sea from flooding by building
dikes. The process of land forming has thus been stopped, but subsidence continues, by slow tectonic movements. In order to compensate for
the subsidence of the land, and sea water level rise, the dikes must gradually be raised, so that they become heavier and cause more subsidence.
This process must continue forever if the country is to be maintained.

People use the land to live on, and build all sort of structures: houses, roads, bridges, etcetera. It is the task of the geotechnical engineer
to predict the behavior of the soil as a result of these human activities. The problems that arise are, for instance, the settlement of a road or a
railway under the influence of its own weight and the traffic load, the margin of safety of an earth retaining structure (a dike, a quay wall or a
sheet pile wall), the earth pressure acting upon a tunnel or a sluice, or the allowable loads and the settlements of the foundation of a building.
For all these problems soil mechanics should provide the basic knowledge.
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1.2 History
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Figure 1.1: Landslide near Weesp, 1918.

Soil mechanics has been developed in the beginning of the 20th century. The
need for the analysis of the behavior of soils arose in many countries, often
as a result of spectacular accidents, such as landslides and failures of founda-
tions. In the Netherlands the slide of a railway embankment near Weesp, in
1918 (see Figure 1.1) gave rise to the first systematic investigation in the field
of soil mechanics, by a special commission set up by the government. Many
of the basic principles of soil mechanics were well known at that time, but
their combination to an engineering discipline had not yet been completed.
The first important contributions to soil mechanics are due to Coulomb, who
published an important treatise on the failure of soils in 1776, and to Rank-
ine, who published an article on the possible states of stress in soils in 1857.
In 1856 Darcy published his famous work on the permeability of soils, for
the water supply of the city of Dijon. The principles of the mechanics of
continua, including statics and strength of materials, were also well known
in the 19th century, due to the work of Newton, Cauchy, Navier and Boussi-
nesq. The union of all these fundamentals to a coherent discipline had to
wait until the 20th century. It may be mentioned that the committee to
investigate the disaster near Weesp came to the conclusion that the water
levels in the railway embankment had risen by sustained rainfall, and that
the embankment’s strength was insufficient to withstand these high water
pressures.

Important pioneering contributions to the development of soil mechanics
were made by Karl Terzaghi, who, among many other things, has described
how to deal with the influence of the pressures of the pore water on the be-
havior of soils. This is an essential element of soil mechanics theory. Mistakes
on this aspect often lead to large disasters, such as the slides near Weesp,
Aberfan (Wales) and the Teton Valley Dam disaster. In the Netherlands
much pioneering work was done by Keverling Buisman, especially on the

deformation rates of clay. A stimulating factor has been the establishment of the Delft Soil Mechanics Laboratory in 1934, now known as
Deltares. In many countries of the world there are similar institutes and consulting companies that specialize on soil mechanics. Usually they
also deal with Foundation engineering, which is concerned with the application of soil mechanics principle to the design and the construction
of foundations in engineering practice. Soil mechanics and Foundation engineering together are often denoted as Geotechnics. A well known
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consulting company in this field is Fugro, with its head office in Leidschendam, and branch offices all over the world.

The international organization in the field of geotechnics is the International Society for Soil Mechanics and Geotechnical Engineering, the
ISSMGE, which organizes conferences and stimulates the further development of geotechnics by setting up international study groups and by
standardization. In most countries the International Society has a national society. In the Netherlands this is the Department of Geotechnics
of the Royal Netherlands Institution of Engineers (KIVI), with about 800 members.

1.3 Why Soil Mechanics ?

Soil mechanics has become a distinct and separate branch of engineering mechanics because soils have a number of special properties, which
distinguish the material from other materials. Its development has also been stimulated, of course, by the wide range of applications of soil
engineering in civil engineering, as all structures require a sound foundation and should transfer its loads to the soil. The most important
special properties of soils will be described briefly in this chapter. In further chapters they will be treated in greater detail, concentrating on
quantitative methods of analysis.

1.3.1 Stiffness dependent upon stress level

Many engineering materials, such as metals, but also concrete and wood, exhibit linear stress-strain-behavior, at least up to a certain
stress level. This means that the deformations will be twice as large if the stresses are twice

0 as large. This property is described by Hooke’s law, and the materials are called linear elastic.
1] Soils do not satisfy this law. For instance, in compression soil becomes gradually stiffer. At the
surface sand will slip easily through the fingers, but under a certain compressive stress it gains

DD an ever increasing stiffness and strength. This is mainly caused by the increase of the forces

between the individual particles, which gives the structure of particles an increasing strength.
This property is used in daily life by the packaging of coffee and other granular materials by a
plastic envelope, and the application of vacuum inside the package. The package becomes very
hard when the air is evacuated from it. In civil engineering the non-linear property is used to
great advantage in the pile foundation for a building on very soft soil, underlain by a layer of
sand. In the sand below a thick deposit of soft clay the stress level is high, due to the weight of
the clay. This makes the sand very hard and strong, and it is possible to apply large compressive

forces to the piles, provided that they are long enough to reach well into the sand.
Figure 1.2: Pile foundation.
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1.3.2 Shear

In compression soils become gradually stiffer. In shear, however, soils become gradually softer, and if the shear stresses reach a certain level, with
respect to the normal stresses, it is even possible that failure of the soil mass occurs. This means that the slope of a sand heap, for instance in a de-
pot or in a dam, can not be larger than about 30 or 40 degrees. The reason for this is that particles would slide over each other at greater slopes. As
a consequence of this phenomenon many countries in deltas of large rivers are very flat. It has also
caused the failure of dams and embankments all over the world, sometimes with very serious conse-
quences for the local population. Especially dangerous is that in very fine materials, such as clay, a
steep slope is often possible for some time, due to capillary pressures in the water, but after some time

these capillary pressures may vanish (perhaps because of rain), and the slope will fail.
A positive application of the failure of soils in shear is the construction of guard rails along highways.
I After a collision by a vehicle the foundation of the guard rail will rotate in the soil due to the large
shear stresses between this foundation and the soil body around it. This will dissipate large amounts of
Figure 1.3: A heap of sand. energy (into heat), creating a permanent deformation of the foundation of the rail, but the passengers,
and the car, may be unharmed. Of course, the guard rail must be repaired after the collision, which can relatively easily be done with the aid

of a heavy vehicle.

1.3.3 Dilatancy

Shear deformations of soils often are accompanied by volume changes. Loose sand has a tendency to contract to a smaller volume, and
densely packed sand can practically deform only when the volume expands somewhat, making the sand looser. This is called dilatancy,
a phenomenon discovered by Reynolds, in 1885. This property causes the soil around a human foot
on the beach near the water line to be drawn dry during walking. The densely packed sand is loaded
by the weight of the foot, which causes a shear deformation, which in turn causes a volume expansion,
which sucks in some water from the surrounding soil. The expansion of a dense soil during shear is
shown in Figure 1.4. The space between the particles increases when they shear over each other.

On the other hand a very loose assembly of sand particles will have a tendency to collapse when
it is sheared, with a decrease of the volume. Such volume deformations may be especially dangerous
when the soil is saturated with water. The tendency for volume decrease then may lead to a large increase in the pore water pressures. Many
geotechnical accidents have been caused by increasing pore water pressures. During earth quakes in Japan, for instance, saturated sand is
sometimes densified in a short time, which causes large pore pressures to develop, so that the sand particles may start to float in the water. This
phenomenon is called liquefaction. In the Netherlands the sand in the channels in the Eastern Scheldt estuary was very loose, which required
large densification works before the construction of the storm surge barrier. Also, the sand used to create the airport Tjek Lap Kok in Hongkong
had to be densified before the construction of the runways and the facilities of the airport.

Figure 1.4: Dilatancy.
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1.3.4 Creep

The deformations of a soil often depend upon time, even under a constant load. This is called creep. Clay and peat exhibit this phenomenon.
It causes structures founded on soft soils to show ever increasing settlements. A new road, built on a soft soil, will continue to settle for many
years. For buildings such settlements are particular damaging when they are not uniform, as this may lead to cracks in the building.

The building of dikes in the Netherlands, on compressible layers of clay and peat, results in settlements of these layers that continue for
many decades. In order to maintain the level of the crest of the dikes, they must be raised after a number of years. This results in increasing
stresses in the subsoil, and therefore causes additional settlements. This process will continue forever. Before the construction of the dikes the
land was flooded now and then, with sediment being deposited on the land. This process has been stopped by man building dikes. Safety has
an ever increasing price.

Sand and rock show practically no creep, except at very high stress levels. This may be relevant when predicting the deformation of porous
layers from which gas or oil are extracted.

1.3.5 Groundwater

A special characteristic of soil is that water may be present in the pores of the soil. This water contributes to the stress transfer in the soil. It
may also be flowing with respect to the granular particles, which creates friction stresses between the fluid and the solid material. In many cases
soil must be considered as a two phase material. As it takes some time before water can be expelled from a soil mass, the presence of water
usually prevents rapid volume changes.

In many cases the influence of the groundwater has been very large. In 1953 in the Netherlands many dikes in the south-west of the
country failed because water flowed over them, penetrated the soil, and then flowed through
the dike, with a friction force acting upon the dike material. see Figure 1.5. The force of the
water on and inside the dike made the slope slide down, so that the dike lost its water retaining .
capacity, and the low lying land was flooded in a short time.

In other countries of the world large dams have sometimes failed also because of rising water .
tables in the interior of the dam (for example, the Teton Valley Dam in the USA, in which water
could enter the coarse dam material because of a leaky clay core). Even excessive rainfall may 0
fill up a dam, as happened near Aberfan in Wales in 1966, when a dam of mine tailings collapsed
onto the village.

It is also very important that lowering the water pressures in a soil, for instance by the production of groundwater for drinking purposes,
leads to an increase of the stresses between the particles, which results in settlements of the soil. This happens in many big cities, such as
Venice and Bangkok, that may be threatened to be swallowed by the sea. It also occurs when a groundwater table is temporarily lowered for the
construction of a dry excavation. Buildings in the vicinity of the excavation may be damaged by lowering the groundwater table. On a different
scale the same phenomenon occurs in gas or oil fields, where the production of gas or oil leads to a volume decrease of the reservoir, and thus

Figure 1.5: Overflowing dike.
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to subsidence of the soil. The production of natural gas from the large reservoir in Groningen is estimated to result in a subsidence of about
50 cm in the production time of the reservoir.

1.3.6 Unknown initial stresses

Soil is a natural material, created in historical times by various geological processes. Therefore the initial state of stress is often not uniform,
and often even partly unknown. Because of the non-linear behavior of the material, mentioned above, the initial stresses in the soil are of great

Figure 1.6: Stresses.

importance for the determination of soil behavior under additional loads. These initial stresses depend upon
geological history, which is never exactly known, and this causes considerable uncertainty. In particular, the initial
horizontal stresses in a soil mass are usually unknown. The initial vertical stresses may be determined by the weight
of the overlying layers. This means that the stresses increase with depth, and therefore stiffness and strength also
increase with depth. The horizontal stresses, however, usually remain largely unknown. When the soil has been
compressed horizontally in earlier times, it can be expected that the horizontal stress is high, but when the soil is
known to have spread out, the horizontal stresses may be very low. Together with the stress dependency of the
soil behavior all this means that there may be considerable uncertainty about the initial behavior of a soil mass.

It may also be noted that further theoretical study can not provide much help in this matter. Studying field history, or visiting the site, and
talking to local people, may be more helpful.

1.3.7 Variability
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Figure 1.7: Pisa.

The creation of soil by ancient geological processes also means that soil properties may be rather different on different
locations. Even in two very close locations the soil properties may be completely different, for instance when an
ancient river channel has been filled with sand deposits. Sometimes the course of an ancient river can be traced on
the surface of a soil, but often it can not be seen at the surface. When an embankment is built on such a soil, it
can be expected that the settlements will vary, depending upon the local material in the subsoil. The variability of
soil properties may also be the result of a heavy local load in the past.

A global impression of the soil composition can be obtained from geological maps. These indicate the geological
history and character of the soils. Together with geological knowledge and experience this may give a first indication
of the soil properties. Other geological information may also be helpful. Large areas of Western Europe have, for
instance, been covered by thick layers of ice in earlier ice ages, and this means that the soils in these areas have been
subject to a preload of considerable magnitude, and therefore may be rather dense. An accurate determination of
soil properties can not be made from desk studies. It requires testing of the actual soils in the laboratory, using
samples taken from the field, or testing of the soil in the field (in situ). This will be elaborated in later chapters.
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Problem 1.1 In times of high water in the rivers in The Netherlands, when the water table rises practically to the crest of the dikes, local authorities
sometimes put sand bags on top of the dike. Is that useful?

Problem 1.2 Another measure to prevent failure of a dike during high floods, is to place large sheets of plastic on the slope of the dike. On which side?

Problem 1.3 Will the horizontal stress in the soil mass near a deep river be relatively large or small?

Problem 1.4 The soil at the bottom of the North Sea is often much stiffer in the Northern parts (near Norway) than it is in the Southern parts (near

London). What can be the cause?

Figure 1.8: Delft.

Problem 1.5 A possible explanation of the leaning of the Pisa tower is that the subsoil contains a com-
pressible clay layer of variable thickness. On what side of the tower would that clay layer be thick-
est?

Problem 1.6 Another explanation for the leaning of the Pisa tower is that in earlier ages (before the start of the
building of the tower, in 1400) a heavy structure stood near that location. On which side of the tower would that
building have been?

Problem 1.7 In many cities of the world leaning towers may be found, though nowhere so spectacular as in Pisa.
An example is shown in Figure 1.8 of the tower of the Old Church of Delft, along the canal Oude Delft. Can you
imagine what is the probable cause in this case, and can you suggest a simple technical solution to prevent further
leaning?



Chapter 2

CLASSIFICATION

2.1 Grain size

Soils are usually classified into various types. In many cases these various types also have different mechanical properties. A simple subdivision
of soils is on the basis of the grain size of the particles that constitute the soil. Coarse granular material is often denoted as gravel and finer
material as sand. In order to have a uniformly applicable terminology it has been agreed internationally to consider particles larger than 2 mm,
but smaller than 63 mm as gravel. Larger particles are denoted as stones. Sand is the material consisting of particles smaller than 2 mm, but
larger than 0.063 mm. Particles smaller than 0.063 mm and larger than 0.002 mm are denoted as silt. Soil consisting of even smaller particles,
smaller than 0.002 mm, is denoted as clay or luthum, see Table 2.1. In some countries, such as the Netherlands, the soil may also contain
layers of peat, consisting of organic material such as decayed plants. Particles
of peat usually are rather small, but it may also contain pieces of wood. It is
then not so much the grain size that is characteristic, but rather the chemical

Soil type min. max.

composition, with large amounts of carbon. The amount of carbon in a soil
clay 0.002 mm can easily be determined by measuring how much is lost when burning the

silt 0.002 mm | 0.063 mm material.
The mechanical behavior of the main types of soil, sand, clay and peat,
sand 0.063 mm 2 mm is rather different. Clay usually is much less permeable for water than sand,
gravel 2 mm 63 mm but it usually is also much softer. Peat is usually is very light (some times
hardly heavier than water), and strongly anisotropic because of the presence
Table 2.1: Grain sizes. of fibers of organic material. Peat usually is also very compressible. Sand is

rather permeable, and rather stiff, especially after a certain preloading. It
is also very characteristic of granular soils such as sand and gravel, that they can not transfer tensile stresses. The particles can only transfer
compressive forces, no tensile forces. Only when the particles are very small and the soil contains some water, can a tensile stress be transmitted,
by capillary forces in the contact points.

The grain size may be useful as a first distinguishing property of soils, but it is not very useful for the mechanical properties. The quantitative
data that an engineer needs depend upon the mechanical properties such as stiffness and strength, and these must be determined from mechanical
tests. Soils of the same grain size may have different mechanical properties. Sand consisting of round particles, for instance, can have a strength
that is much smaller than sand consisting of particles with sharp points. Also, a soil sample consisting of a mixture of various grain sizes can
have a very small permeability if the small particles just fit in the pores between the larger particles.

13
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The global character of a classification according to grain size is well illustrated by the characterization sometimes used in Germany, saying
that gravel particles are smaller than a chicken’s egg and larger than the head of a match, and that sand particles are smaller than a match
head, but should be visible to the naked eye.

2.2 Grain size diagram

The size of the particles in a certain soil can be represented graphically in a grain size diagram, see Figure 2.1. Such a diagram indicates the
percentage of the particles smaller than a certain diameter, mea-
sured as a percentage of the mass (or weight). A steep slope
of the curve in the diagram indicates a uniform soil, a shallow
slope of the diagram indicates that the soil contains particles
of strongly different grain sizes. For rather coarse particles, say
larger than 0.05 mm, the grain size distribution can be deter-
mined by sieving. The usual procedure is to use a system of
sieves having different mesh sizes, stacked on top of each other,
with the coarsest mesh on top and the finest mesh at the bot-
tom, see Figure 2.2. After shaking the assembly of sieves, by
hand or by a shaking machine, each sieve will contain the par-
ticles larger than its mesh size, and smaller than the mesh size
of all the sieves above it. In this way the grain size diagram can
be determined. Special standardized sets of sieves are available,
as well as convenient shaking machines. The example shown in
Figure 2.1 illustrates normal sand. In this case there appear to be no grains larger than 5 mm.

100 %

0.01 mm 0.1 mm 1 mm 10 mm

Figure 2.1: Grain size diagram.

The grain size distribution can be characterized by the quantities Dgg and D1g. These indicate that 60 %, respectively 10 % of the particles
(expressed as weights) is smaller than that diameter. In the case illustrated in Figure 2.1 it appears that Dgp ~ 0.6 mm, and Do =~ 0.07 mm.
The ratio of these two numbers is denoted as the uniformity coefficient Cy,

_ Dgo

C, = —.
D1o

(2.1)

In the case of Figure 2.1 this is about 8.5. This indicates that the soil is not uniform. This is sometimes denoted as a well graded soil. In a
poorly graded soil the particles all have about the same size. The uniformity coefficient is than only slightly larger than 1, say C,, = 2.
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For particles smaller than about 0.05 mm the grain size can not be de-
termined by sieving, because the size of the holes in the mesh would become
unrealistically small, and also because during shaking the small particles
might fly up in the air, as dust. The amount of particles of a particular size
can then be determined much better by measuring the velocity of deposition
in a glass of water. This method is based upon a formula derived by Stokes.
This formula expresses that the force on a small sphere, sinking in a viscous
fluid, depends upon the viscosity of the fluid, the size of the sphere and the
velocity. Because the force acting upon the particle is determined by the
weight of the particle under water, the velocity of sinking of a particle in a
fluid can be derived. The formula is

_ 2
v = %’ (2.2)
14

where 7, is the volumetric weight of the solid particles, -~ is
the volumetric weight of the fluid, D is the grain size, and pu is

the dynamic viscosity of the fluid. Because for very small par-
ticles the velocity may be very small, the test may take rather
long.

Figure 2.2: Sieve Test.

2.3 Chemical composition

Besides the difference in grain size, the chemical composition of soil can also be helpful in distinguishing between various types of soils. Sand
and gravel usually consist of the same minerals as the original rock from which they were created by the erosion process. This can be quartz,
feldspar or glimmer. In Western Europe sand usually consists mainly of quartz. The chemical formula of this mineral is SiOs.

Fine-grained soils may contain the same minerals, but they also contain the so-called clay minerals, which have been created by chemical
erosion. The main clay minerals are kaolinite, montmorillonite and illite. In the Netherlands the most frequent clay mineral is illite. These
minerals consist of compounds of aluminum with hydrogen, oxygen and silicates. They differ from each other in chemical composition, but also
in geometrical structure, at the microscopic level. The microstructure of clay usually resembles thin plates. On the microscale there are forces
between these very small elements, and ions of water may be bonded. Because of the small magnitude of the elements and their distances, these
forces include electrical forces and the Van der Waals forces.
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Although the interaction of clay particles is of a different nature than the interaction between the much larger grains of sand or gravel, there
are many similarities in the global behavior of these soils. There are some essential differences, however. The deformations of clay are time
dependent, for instance. When a sandy soil is loaded it will deform immediately, and then remain at rest if the load remains constant. Under
such conditions a clay soil will continue to deform, however. This is called creep. It is very much dependent upon the actual chemical and
mineralogical constitution of the clay. Also, some clays, especially clays containing large amounts of montmorillonite, may show a considerable
swelling when they are getting wetter.

As mentioned before, peat contains the remains of decayed trees and plants. Chemically it therefore consists partly of carbon compounds.
It may even be combustible, or it may be produce gas. As a foundation material it is not very suitable, also because it is often very light and
compressible. It may be mentioned that some clays may also contain considerable amounts of organic material.

For a civil engineer the chemical and mineralogical composition of a soil may be useful as a warning of its characteristics, and as an
indication of its difference from other materials, especially in combination with data from earlier projects. A chemical analysis does not give
much quantitative information on the mechanical properties of a soil, however. For the determination of these properties mechanical tests, in
which the deformations and stresses are measured, are necessary. These will be described in later chapters.

2.4 Consistency limits

For very fine soils, such as silt and clay, the consistency is an important property. It determines whether the soil can easily be handled, by soil
moving equipment, or by hand. The consistency is often very much dependent on the amount of water in the soil. This is expressed by the
water content w (see also chapter 3). It is defined as the weight of the water per unit
weight of solid material,

w:Ww/Wk.

When the water content is very low (as in a very dry clay) the soil can be very stiff,
almost like a stone. It is then said to be in the solid state. Adding water, for instance
if the clay is flooded by rain, may make the clay plastic, and for higher water contents
the clay may even become almost liquid. In order to distinguish between these states
(solid, plastic and liquid) two standard tests have been agreed upon, that indicate the
consistency limits. They are sometimes denoted as the Atterberg limits, after the Swedish

Figure 2.3: Liquid limit.

engineer who introduced them.

The transition from the liquid state to the plastic state is denoted as the liquid limit, wy. It represents the lowest water content at which the
soil behavior is still mainly liquid. As this limit is not absolute, it has been defined as the value determined in a certain test, due to Casagrande,
see Figure 2.3. In the test a hollow container with a soil sample may be raised and dropped by rotating an axis. The liquid limit is the value
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of the water content for which a standard V-shaped groove cut in the soil, will just close
after 25 drops. When the groove closes after less than 25 drops, the soil is too wet, _
and some water must be allowed to evaporate. By waiting for some time, and perhaps
mixing the clay some more, the water content will have decreased, and the test may be BI(
repeated, until the groove is closed after precisely 25 drops. Then the water content must
immediately be determined, before any more water evaporates, of course.

An alternative for Casagrande’s test is the fall cone, see Figure 2.4. In this test a steel
cone, of 60 grams weight, and having a point angle of 60°, is placed upon a clay sample,
with the point just at the surface of the clay. The cone is then dropped and its penetration

depth is measured. The liquid limit has been defined as the water content corresponding | |
to a penetration of exactly 10 mm. Again the liquid limit can be determined by doing the Figure 2.4: The fall cone.
test at various water contents. It has also been observed, however, that the penetration

depth, when plotted on a logarithmic scale, is an approximately linear function of the

water content. This means that the liquid limit may be determined from a single test, which is much faster, although less accurate.

0 "
10

20
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Figure 2.5: Water content.

The transition from the plastic state to the solid state is called the plastic limit, and denoted as
wp. It is defined as the water content at which the clay can just be rolled to threads of 3 mm diameter.
Very wet clay can be rolled into very thin threads, but dry clay will break when rolling thick threads.
The (arbitrary) limit of 3 mm is supposed to indicate the plastic limit. In the laboratory the test is
performed by starting with a rather wet clay sample, from which it is simple to roll threads of 3 mm. By
continuous rolling the clay will gradually become drier, by evaporation of the water, until the threads
start to break.

For many applications (potteries, dike construction) it is especially important that the range of the
plastic state is large. This is described by the plasticity index PI. It is defined as the difference of the
liquid limit and the plastic limit,

PI:wL—wp.

The plasticity index is a useful measure for the possibility to process the clay. It is important for
potteries, for the construction of the clay core in a high dam, and for the construction of a layer of low
permeability covering a deposit of polluted material. In all these cases a high plasticity index indicates
that the clay can easily be used without too much fear of it turning into a liquid or a solid.

In countries with very thick clay deposits (England, Japan, Scandinavia) it is often useful to deter-
mine a profile of the plastic limit and the liquid limit as a function of depth, see Figure 2.5. In this
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diagram the natural water content, as determined by taking samples and immediately determining the water content, can also be indicated.

2.5 An international classification system

The large variability of soil types, even in small countries such as the Netherlands, leads to large variations in soil properties in soils that may
resemble each other very much at first sight. This is enhanced by confusion between terms such as sandy clay and clayey sand that may be
used by local firms. In some areas tradition may have also lead to the use of terms such as blue clay or brown clay, that may be very clear to
experienced local engineers, but have little meaning to others.

Uniform criteria for the classification of soils do not exist, especially because of local variations and characteristics. The soil in a plane of
Tibet may be quite different from the soil in Bolivia or Canada, as their geological history may be quite different. The engineer should be aware
of such differences and remain open to characterizations that are used in other countries. Nevertheless, a classification system that has been

developed by the United States Bureau of Reclamation, is widely used all
over the world. This system consists of two characters to indicate a soil type,

Character 1 Character 2 see Table 2.2. A soil of type SM, for instance, is a silty sand, which indicates

that it is a sand, but containing considerable amounts of non-organic fine silty

G gravel W | well graded particles. This type of soil is found in the Eastern Scheldt in the Netherlands.

S sand P | poorly graded The sand on the beaches of the Netherlands usually is of the type SW. A

. . clay of very low plasticity, that is a clay with a relatively small plasticity

M | silt M | silty index is denoted as CL. The clay in a polder in Holland will often be of the
C clay C | clayey type CH. It has a reasonably large range of plastic behavior.

0 organic | T | low plasticity The characterization well graded indicates that a granular material con-

sists of particles that together form a good framework for stress transfer. It

Pt | peat H | high plasticity usually is relatively stiff and strong, because the smaller particles fill well in

the pores between the larger particles. A material consisting of large gravel

Table 2.2: Unified Classification System (USA). particles and fine sand is called poorly graded, because it has little coherence.

A well graded material is suitable for creating a road foundation, and is also

suitable for the production of concrete.
Global classifications as described above usually have only little meaning for the determination of mechanical properties of soils, such as
stiffness and strength. There may be some correlation between the classification and the strength, but this is merely indicative. For engineering
calculations mechanical tests should be performed, in which stresses and deformations are measured. Such tests are described in later chapters.



Chapter 3

PARTICLES, WATER, AIR

3.1 Porosity

Soils usually consist of particles, water and air. In order to describe a soil various parameters are used to describe the distribution of these three
components, and their relative contribution to the volume of a soil. These are also useful to determine other parameters, such as the weight of
the soil. They are defined in this chapter.

An important basic parameter is the porosity n, defined as the ratio of the volume of the pore space and the total volume of the soil,

0=V, /Vi. (3.1)

For most soils the porosity is a number between 0.30 and 0.45 (or, as it is usually expressed as a percentage, between 30 % and 45 %). When
the porosity is small the soil is called densely packed, when the porosity is large it is loosely packed.
It may be interesting to calculate the porosities for two particular cases. The first case is a very
.¢.‘.¢.¢.‘.¢. loose packing of spherical particles, in which the contacts between the spheres occur in three mutually
Q.*.*.¢.*.¢. orthogonal directions only. This is called a cubic array of particles, see Figure 3.1. If the diameter of
.¢.¢.¢.¢.¢.¢. the spheres is D, each sphere occupies a volume 7 D3 /6 in space. The ratio of the volume of the solids
0000009 to the total volume then is V,,/V; = m/6 = 0.5236, and the porosity of this assembly thus is n = 0.4764.
This is the loosest packing of spherical particles that seems possible. Of course, it is not stable: any
small disturbance will make the assembly collapse.

A very dense packing of spheres can be constructed by starting from layers in which the spheres form a pattern of equilateral triangles, see Fig-
ure 3.2. The packing is constructed by packing the layers such that the spheres of the next layer just fit in the hollow space between three spheres
of the previous layer. The axial lines from a sphere with the three spheres that support it from below
form an regular tetrahedron, having sides of magnitude D. The height of each tetrahedron is Dm.
Each sphere of the assembly, with its neighboring part of the voids, occupies a volume in space of
magnitude D x (Dy/3/4) x (D+/2/3) = D?\/1/2. Because the volume of the sphere itself is 7D? /6,
the porosity of this assembly is n = 1 — 7/v/18 = 0.2595. This seems to be the most dense packing of

Figure 3.2: Densest array. a set of spherical particles.
Although soils never consist of spherical particles, and the values calculated above have no real
meaning for actual soils, they may give a certain indication of what the porosity of real soils may be. It can thus be expected that the porosity
n of a granular material may have a value somewhere in the range from 0.25 to 0.45. Practical experience confirms this statement.

Figure 3.1: Cubic array.

19
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The amount of pores can also be expressed by the void ratio e, defined as the ratio of the volume of the pores to the volume of the solids,
e="V,/Vs. (3.2)

In many countries this quantity is preferred to the porosity, because it expresses the pore volume with respect to a fixed volume (the volume of
the solids). Because the total volume of the soil is the sum of the volume of the pores and the volume of the solids, V;, = V,, + V5, the porosity
and the void ratio can easily be related,

e=n/(1—-n), n=ce/(l+e). (3.3)

The porosity can not be smaller than 0, and can not be greater than 1. The void ratio can be greater than 1.
The void ratio is also used in combination with the relative density. This quantity is defined as
RD = €max — €

€max — €min

(3.4)

Here e,,,4, is the maximum possible void ratio, and e,,;, the minimum possible value. These values may be determined in the laboratory. The
densest packing of the soil can be obtained by strong vibration of a sample, which then gives en;,. The loosest packing can be achieved by
carefully pouring the soil into a container, or by letting the material subside under water, avoiding all disturbances, which gives eyax. The
accuracy of the determination of these two values is not very good. After some more vibration the sample may become even denser, and the
slightest disturbance may influence a loose packing.

It follows from eq. (3.4) that the relative density varies between 0 and 1. A small value, say RD < 0.5, means that the soil can easily be
densified. Such a densification can occur in the field rather unexpectedly, for instance in case of a sudden shock (an earthquake), with dire
consequences.

Of course, the relative density can also be expressed in terms of the porosity, using egs. (3.3), but this leads to an inconvenient formula, and
therefore this is unusual.

3.2 Degree of saturation
The pores of a soil may contain water and air. To describe the ratio of these two the degree of saturation S is introduced as

S =Vy/V,. (3.5)

Here V,, is the volume of the water, and V}, is the total volume of the pore space. The volume of air (or any other gas) per unit pore space then
is 1 —S. If S =1 the soil is completely saturated, if S = 0 the soil is perfectly dry.
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3.3 Density

For the description of the density and the volumetric weight of a soil, the densities of the various components are needed. The density of a
substance is the mass per unit volume of that substance. For water this is denoted by p,,, and its value is about 1000 kg/m?. Small deviations
from this value may occur due to temperature differences or variations in salt content. In soil mechanics these are often of minor importance,
and it is often considered accurate enough to assume that

pw = 1000 kg/m?. (3.6)

For the analysis of soil mechanics problems the density of air can usually be disregarded.

The density of the solid particles depends upon the actual composition of the solid material. In many cases, especially for quartz sands, its
value is about

pp = 2650 kg/m?. (3.7)

This value can be determined by carefully dropping a certain mass of particles (say W)) in a container partially filled with water, see Figure 3.3.
The precise volume of the particles can be measured by observing the rise of the water table in the glass. This is particularly easy when using a
graduated measuring glass. The rising of the water table indicates the volume of the particles, V,,. Their mass W,, can be measured most easily
by measuring the weight of the glass before and after dropping the particles
into it. The density of the particle material then follows immediately from
its definition,

pp = Wp/Vp. (3.8)

For sand the value of p, usually is about 2650 kg/ m3.
The principle of this simple test, in which the volume of a body having
a very irregular shape (a number of sand particles) is measured, is due to
Archimedes. He had been asked to check the composition of a golden crown,
of which it was suspected that it contained silver (which is cheaper). He
realized that this could be achieved by comparing the density of the crown
Figure 3.3: Measuring the density of solid particles with the density of a piece of pure gold, but then he had to determine the
precise volume of the crown. The legend has it that when stepping into his
bath he discovered that the volume of a body submerged in water, whatever its precise shape, equals the volume of water above the original

water table. While shouting ”FEureka!” he ran into the street, according to the legend, to the surprise of the bystanders.
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3.4 Volumetric weight

In soil mechanics it is often required to determine the total weight of a soil body. This can be calculated if the porosity, the degree of saturation
and the densities are known. The weight of the water in a volume V of soil is Snp,gV, and the weight of the particles in that volume is
(1 —n)ppgV, where g is the strength of the gravity field, or the acceleration of gravity. The value of the gravity constant is about g = 9.8 N/kg,
or, approximately, g = 10 N/kg. Thus the total weight W is

W = [Snpuwg + (1 —n)pyg]V. (3.9)
This means that the volumetric weight 7y, defined as the weight per unit volume, is
Y = W)V = Snpug + (1 - n)pyg. (3.10)

This formula indicates that the volumetric weight is determined by a large number of soil parameters: the degree of saturation, the porosity,
the densities of water and soil particles, and the gravity constant. In reality it is much simpler to determine the volumetric weight (often also
denoted as the unit weight) directly by measuring the weight W of a volume V of soil. It is then not necessary to determine the contribution of
each of the components.

If the soil is completely dry the dry volumetric weight is
va = Waq/V = (1 —n)ppg. (3.11)

This value can also be determined directly by weighing a volume of dry soil. In order to dry the soil a sample may be placed in an oven. The
temperature in such an oven is usually close to 100 degrees, so that the water will evaporate quickly. At a much higher temperature there would
be a risk that organic parts of the soil would be burned.

From the dry volumetric weight the porosity n can be determined, see eq. (3.11), provided that the density of the particle material is known.
This is a common method to determine the porosity in a laboratory.

If both the original volumetric weight v and the dry volumetric weight ~4 are known, by measuring the weight and volumes both in the
original state and after drying, the porosity n may be determined from eq. (3.11), and then the degree of saturation S may be determined
using eq. (3.10). Unfortunately, this procedure is not very accurate for soils that are almost completely saturated, because a small error in the
measurements may cause that one obtains, for example, S = 0.97 rather than the true value S = 0.99. In itself this is rather accurate, but the
error in the air volume is then 300 %. In some cases, this may lead to large errors, for instance when the compressibility of the water-air-mixture
in the pores must be determined.
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3.5 Water content

The water content is another useful parameter, especially for clays. It has been used in the previous chapter. By definition the water content
w is the ratio of the weight (or mass) of the water and the solids,

w = Wy /W,. (3.12)

It may be noted that this is not a new independent parameter, because

w=8-—" Pv _ gl (3.13)
L=npp Pp

For a completely saturated soil (S = 1) and assuming that p,/p,, = 2.65, it follows that void ratio e is about 2.65 times the water content.

A normal value for the porosity is n = 0.40. Assuming that p, = 2650 kg/m? it then follows from eq. (3.11) that v4 = 15900 N/m?, or
va = 15.9 kN/m3. Values of the order of magnitude of 16 kN/m3 are indeed common for dry sand. If the material is completely saturated it
follows from eq. (3.10) that v ~ 20 kN/m?3. For saturated sand this is a common value. The volumetric weight of clay soils may also be about
20 kN/m?, but smaller values are very well possible, especially when the water content is small, of course. Peat is often much lighter, sometimes
hardly heavier than water.

Example 3.1

A glass is initially filled with some water, see Figure 3.4. The volume of the water is mea-
sured to be 240 cm®. Some sand particles are carefully poured into the water, avoiding
the formation of air bubbles. The water table in the glass then rises to indicate a volume
of 320 cm®. The sand particles come to rest at the bottom of the glass, indicating a to-
tal volume of 144 cm®. Calculate the porosity n of the sand. Also calculate the void ratio
e.

Solution

The rise of the water level after pouring the sand particles indicates that the volume of the water
plus the volume of the solid particles is 320 cm®. Because the volume of the water is 240 cm? it
Figure 3.4: Measuring the porosity. follows that the volume of the solids is Vi = 80 cm®. The level of the sand at the bottom of the

glass indicates that the volume of the sand particles plus the volume of the water in the pores is

V; = 144 cm?®. Tt follows that the volume of the water in the pores is 64 cm?®. Because there is no air in the water or the sand it follows that the volume of
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the pores is V,, = 64 cm®. The porosity now is n = V,/V; = 0.44, or n = 44 %. The void ratio is e = V,,/V; = 0.80, or e = 80 %. Note that ¢ = n/(1 — n)
andn =e/(1+e).

Example 3.2

If the glas is shaken, it will be observed that the water level remains the same, but the level of the sand decreases. If this level now indicates a total volume
of 128 cm?, calculate the porosity and the void ratio after shaking.

Solution

After shaking the volume of the sand (including the water in the pores) is V4 = 128 cm?, of which the solid particles occupy a volume Vi = 80 cm? (as be-
fore), so that the volume of the pores is V;, = 48 cm®. Tt follows that n = V,,/V; = 0.375, or n = 37.5 %. The void ratio now is e = V},/Vs = 0.60, or ¢ = 60 %.

Example 3.3

A test such as shown in Figure 3.4 can also be used to determine the density of the particle material, if not only the volumes are measured but also the
weights. Let the initial water level in the glass indicate a volume of 312 cm®, and the weight of glass and water be 568 g. After carefully pouring some sand
particles into the glass, the water level rises to indicate a volume of 400 cm®. The weight of the glass (with the water and the sand) now appears to be
800 g. Determine the density ps of the particle material, in g/cmB, or in kg/mS.

Solution

The volume of the sand particles is 400 — 312 = 88 cm?®, and the weight of these particles is 800 — 568 = 232 g. This means that the density of the particle
material is ps = 2.64 g/cm®, or ps = 2640 kg/m®.

Example 3.4
A steel ring contains a sample of natural soil. The total weight of the ring and the
soil appears to be 490 g. The ring is placed in an oven, in order to let the wa-
ter evaporate. Then the weight of the ring and the dry soil is found to be 380 g.
The ring itself (empty and dry) weighs 210 g. What is the water content of the
soil ?
Figure 3.5: Soil sample in ring. Solution

The weight of the soil in its natural condition is 490-210=280 g, and the weight of the water
initially was 490-380=110 g. This means that the water content is w = W,,/W,, = 110/170 = 0.65, or w = 65 %.
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Problem 3.1 A truck loaded with 2 m® dry sand appears to weigh ”3 tons” more than the weight of the empty truck. What is the meaning of the term
73 tons”, and what is the volumetric weight of the sand?

Problem 3.2 If it is known that the density of the sand particles in the material of the previous problem is 2600 kg/m3, then what is the porosity n?
And the void ratio e?

Problem 3.3 It would be possible to fill the pores of the dry sand of the previous problems with water. What is the volume of the water that the sand
could contain, and then what is the volumetric weight of the saturated sand?

Problem 3.4 The soil in a polder consists of a clay layer of 5 meter thickness, with a porosity of 50 %, on top of a deep layer of stiff sand. The water
level in the clay is lowered by 1.5 meter. Experience indicates that then the porosity of the clay is reduced to 40 %. What is the subsidence of the soil?

Problem 3.5 The particle size of sand is about 1 mm. Gravel particles are much larger, of the order of magnitude of 1 cm, a factor 10 larger. The shape
of gravel particles is about the same as that of sand particles. What is the influence of the particle size on the porosity?



Chapter 4

STRESSES IN SOILS

4.1 Stresses

As in other materials, stresses may act in soils as a result of an external load and the volumetric weight of the material itself. Soils, however, have a
number of properties that distinguish it from other materials. Firstly, a special property is that soils can only transfer compressive normal stresses,
and no tensile stresses. Secondly, shear stresses can only be transmitted if they are relatively small, compared to the normal stresses. Furthermore
it is characteristic of soils that part of the stresses is transferred by the water in the pores. This will

) be considered in detail in this chapter.
Because the normal stresses in soils usually are compressive stresses only, it is standard practice to
o Tyy use a sign convention for the stresses that is just opposite to the sign convention of classical continuum
Yy — mechanics, namely such that compressive stresses are considered positive, and tensile stresses are

O negative. The stress tensor will be denoted by o. The sign convention for the stress components is

%{7 illustrated in Figure 4.1. Its formal definition is that a stress component is positive when it acts in
positive coordinate direction on a plane with its outward normal in negative coordinate direction, or
when it acts in negative direction on a plane with its outward normal in positive direction. This means
T that the sign of all stress components is just opposite to the sign that they would have in most books
Tyy on continuum mechanics or applied mechanics.

It is assumed that in indicating a stress component o;; the first index denotes the plane on which
the stress is acting, and the second index denotes the direction of the stress itself. This means, for
instance, that the stress component o, indicates that the force in y-direction, acting upon a plane having its normal in the z-direction is
F, = —04yA,, where A, denotes the area of the plane surface. The minus sign is needed because of the special sign convention of soil mechanics,
assuming that the sign convention for forces is the same as in mechanics in general.

Ozy
UII ?

Figure 4.1: Stresses.

4.2 Pore pressures
Soil is a porous material, consisting of particles that together constitute the grain skeleton. In the pores of the grain skeleton a fluid may be

present: usually water. The pore structure of all normal soils is such that the pores are mutually connected. The water fills a space of very
complex form, but it constitutes a single continuous body. In this water body a pressure may be transmitted, and the water may also flow

26
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through the pores. The pressure in the pore water is denoted as the pore pressure.

In a fluid at rest no shear stresses can be transmitted. This means that the pressure is the same in all directions. This can be proved
by considering the equilibrium conditions of a very small triangular element, see Figure 4.2, bounded by a vertical plane, a horizontal plane
and a sloping plane at an angle of 45°. If the pressure on the vertical plane at the right is p, the force on that
plane is pA, where A is the area of that plane. Because there is no shear stress on the lower horizontal plane,
the horizontal force pA must be equilibrated by a force component on the sloping plane. That component
must therefore also be pA. Because on this plane the shear stress is also zero, as on all surfaces, it follows
that the vertical force component must be pA, in order that the resulting force on the plane is perpendicular
to it. This vertical force must be in equilibrium with the vertical force on the lower horizontal plane of the
element. Because the area of that element is also A, the pressure on that plane is p, equal to the pressure on
the vertical plane. Using a little geometry it can be shown that this pressure p acts on every plane through
the same point. This is often denoted as Pascal’s principle.

If the water is at rest (i.e. when there is no flow of the water), the pressure in the water is determined by the depth of the point considered with
respect to the water surface. As shown by Stevin, a great engineer from The Netherlands from the 16" century, the magnitude of the water

Figure 4.2: Pascal.
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Figure 4.3: Hydrostatic water pressure depends upon depth only.

N

pressure on the bottom of a container filled with water, depends only upon the height of the column of water and the volumetric weight of the
water, and not upon the shape of the container, see Figure 4.3. The pressure at the bottom in each case is

P ="Yud, (4.1)

where -y, is the volumetric weight of the water, and d is the depth below the water surface. The total vertical force on the bottom is v,,dA.
Only in case of a container with vertical sides this is equal to the total weight of the water in the container. Stevin showed that for the other
types of containers illustrated in Figure 4.3 the total force on the bottom is also ~,,dA. This can be demonstrated by considering equilibrium
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of the water body, taking into account that the pressure in every point on the walls must always be perpendicular to the wall. The container at
the extreme right in Figure 4.3 resembles a soil body, with its pore space. It can be concluded that the water in a soil satisfies the principles of
hydrostatics, provided that the water in the pore space forms a continuous body.

4.3 Effective stress

On an element of soil normal stresses as well as shear stresses may act. The simplest case, however, is the case of an isotropic normal stress,
see Figure 4.4. It is assumed that the magnitude of this stress, acting in all directions, is o. In the interior of the soil, for instance at a
cross section in the center, this stress is transmitted by a pore pressure p in the water, and by stresses in
the particles. The stresses in the particles are generated partly by the concentrated forces acting in the
contact points between the particles, and partly by the pressure in the water, that almost completely
surrounds the particles. It can be expected that the deformations of the particle skeleton are almost
completely determined by the concentrated forces in the contact points, because the structure can
deform only by sliding and rolling in these contact points. The pressure in the water results in an equal
pressure in all the grains. It follows that this pressure acts on the entire surface of a cross section, and
that by subtracting p from the total stress o a measure for the contact forces is obtained. It can also be
argued that when there are no contact forces between the particles, and a pressure p acts in the pore
water, this same pressure p will also act in all the particles, because they are completely surrounded
by the pore fluid. The deformations in this case are the compression of the particles and the water caused by this pressure p. Quartz and water
are very stiff materials, having an elastic modulus about 1/10 of the elastic modulus of steel, so that the deformations in this case are very small
(say 107%), and can be disregarded with respect to the large deformations that are usually observed in a soil (102 to 1072).

e E These considerations indicate that it seems meaningful to introduce the difference of the total stress o
and the pore pressure p,

Figure 4.4: Isotropic stress.

o' =0—p. (4.2)

The quantity ¢’ is denoted as the effective stress. The effective stress is a measure for the concentrated
forces acting in the contact points of a granular material. If p = o it follows that ¢’ = 0, which means that
then there are no concentrated forces in the contact points. This does not mean that the stresses in the
grains are zero in that case, because there will always be a stress in the particles equal to the pressure in
the surrounding water. The basic idea is, as stated above, that the deformations of a granular material are
almost completely determined by changes of the concentrated forces in the contact points of the grains, which
cause rolling and sliding in the contact points. These are described (on the average) by the effective stress,
a concept introduced by Terzaghi. Eq. (4.2) can, of course, also be written as

Figure 4.5: Karl Terzaghi.
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o=0 +p. (4.3)

Terzaghi’s effective stress principle is often quoted as “total stress equals effective stress plus pore pressure”, but it should be noted that this
applies only to the normal stresses. Shear stresses can be transmitted by the grain skeleton only.

It may be noted that the concept is based upon the assumption that the particles are very stiff compared to the soil as a whole, and also
upon the assumption that the contact areas of the particles are very small. These are reasonable assumptions for a normal soil, but for porous
rock they may not be valid. For rock the compressibility of the rock must be taken into account, which leads to a small correction in the formula.

To generalize the subdivision of total stress into effective stress and pore pressure it may be noted that the water in the pores can not
contribute to the transmission of shear stresses, as the pore pressure is mainly isotropic. Even though in a flowing fluid viscous shear stresses
may be developed, these are several orders of magnitude smaller than the pore pressure, and than the shear stresses than may occur in a soil.
This suggests that the generalization of (4.3) is

!/ /
Ozg = Ogy T D, Oyz = Oy
_ ! !
Oyy = Oy + D, Oy = Oy (4.4)
/ /
Oy = 0,, +D, Oy = Opy-

This is usually called the principle of effective stress. It is one of the basic principles of soil mechanics. The notation, with the effective stresses
being denoted by an accent, o', is standard practice. The total stresses are denoted by o, without accent.

Even though the equations (4.4) are very simple, and may seem almost trivial, different expressions may be found in some publications,
especially relations of the form ¢ = ¢’ + np, in which n is the porosity. The idea behind
this is that the pore water pressure acts in the pores only, and that therefore a quantity np
must be subtracted from the total stress o to obtain a measure for the stresses in the particle
skeleton. That seems to make sense, and it may even give a correct value for the average stress
in the particles, but it ignores that soil deformations are not in the first place determined by
deformations of the individual particles, but mainly by changes in the geometry of the grain
skeleton. This average granular stress might be useful if one wishes to study the effect of stresses
on the properties of the grains themselves (for instance a photo-elastic or a piezo-electric effect),
but in order to study the deformation of soils it is not useful. Terzaghi’s notion, that the soil

Figure 4.6: Effective stress. deformations are mainly determined by the contact forces only, leads directly to the concept of
effective stress, because only if one writes 0/ = o — p do the effective stresses vanish when there
are no contact forces. The pore pressure must be considered to act over the entire surface to obtain a good measure for the contact forces, see
Figure 4.6.
The equations (4.4) can be written in matrix notation as

T4 ZO';j —|—p5ij, (45)
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in which d;; is the Kronecker delta, or the unit matrix. Its definition is

|1 alsi=yj,
0ij = { 0 alsi#3j. (4.6)

Calculating the effective stresses in soils is one of the main problems of soil mechanics. The effective stresses are important because they
determine the deformations. In the next chapter the procedure for the determination of the effective stress will be illustrated for the simplest
case, of one-dimensional deformation. In later chapters more general cases will be considered, including the effect of flowing groundwater.

4.4 Archimedes and Terzaghi

The concept of effective stress is so important for soil mechanics that it deserves careful consideration. It may be illuminating, for instance, to
note that the concept of effective stress is in complete agreement with the principle of Archimedes for the upward force on a submerged body.

Consider a volume of soil of magnitude V', having a porosity n, see Figure 4.7. The total weight of the particles in the volume is (1 —n)~,V,
in which 1, is the volumetric weight of the particle material, which is about 26.5 kN/m?. Following Archimedes, the upward force under water
is equal to the weight of the water that is being displaced by the particles, that is (1 — n)v,,V, in which ,, is the volumetric weight of water,
about 10 kN/m?. The remaining force is

F=1-n)uV-Q1-n)mV,
which must be transmitted to the bottom on which the particles rest. If the area of the volume is denoted by A, and the height by h, then the
average stress is, with ¢/ = F/A,
o' =1 =n)ph—(1=n)yh=(1-n)(%p—7w)h (4.7)

The quantity (v, — Yw) is sometimes called the submerged volumetric weight.

Following Terzaghi the effective stresses must be determined as the difference of the total stress and the pore pressure. The total stress is

generated by the weight of the soil, whatever its constitution, i.e. o = y4h, in which ;s is the volumetric weight of the soil. If the ground water
is at rest the pore pressure is determined by the depth below the water table, i.e. p = y,,h. This means that the effective stress is

o' =vsh — vuh. (4.8)
Because for a saturated soil the volumetric weight is
Ys = NYw + (1 - n)%n

this can also be written as
o' = (1 —=n)yph— (1 =n)yh = (1-n)(v — yw)h (4.9)
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This is identical to the expression (4.7). Terzaghi’s principle of effective stress appears to be in agreement with the principle of Archimedes,
which is a fundamental principle of physics. It may be noted that in the two methods it has been assumed that the determining factor is the
force transmitted between the particles and an eventual rigid surface, or the force transmittance between the grains. This is another basic aspect
of the concept of effective stress, and it can be concluded that Archimedes’ principle confirms the principle of effective stress.

Terzaghi’s approach, leading to the expression (4.8), is somewhat more direct, and especially more easy to
generalize. In this method the porosity n is not needed, and hence it is not necessary to determine the
porosity to calculate the effective stress. On the other hand, the porosity is hidden in the volumetric weight
~s. It is important, however, to realize that Terzaghi’s principle is in agreement with Archimedes’ principle
for incompressible particles, because Archimedes’ principle is so basic in theoretical physics.

Terzaghi’s idea of the effective stress, being the part of the total stress that is responsible for the soil
deformations, and can be determined by subtracting the pore water pressure from the total stress, is the
main reason for Terzaghi to be condidered as the father of soil mechanics. It is a typical example of good

e engineering, being a very good approximation of scientific truth (not exact, because it is assumed that the
Figure 4.7: Archimedes. particles are completely incompressible), and very useful, and convenient, for engineering practice.

The generalization of Terzaghi’s approach to more complicated cases, such as non-saturated soils, or flowing groundwater, is relatively simple.
For a non-saturated soil the total stresses will be smaller, because the soil is lighter. The pore pressure remains hydrostatic, and hence the
effective stresses will be smaller, even though there are just as many particles as in the saturated case. The effective principle can also be applied
in cases involving different fluids (oil and water, or fresh water and salt water). In the case of flowing groundwater the pore pressures must be
calculated separately, using the basic laws of groundwater flow. Once these pore pressures are known they can be subtracted from the total
stresses to obtain the effective stresses.

The procedure for the determination of the effective stresses usually is that first the total stresses are determined, on the basis of the total
weight of the soil and all possible loads. Then the pore pressures are determined, from the conditions on the groundwater. Then finally the
effective stresses are determined by subtracting the pore pressures from the total stresses.

Example 4.1

A small rubber balloon is filled with dry sand, and then closed. The external pressure on the balloon is equal to the atmospheric pressure, hence o = p,.
The pressure in the air inside the balloon is also equal to the atmospheric pressure, p = p,. It follows that the effective stress in the sand is ¢/ = o —p = 0.
This means that there are no contact forces between the soil particles, at least if the effect of the weight of the particles can be disregarded, which is justified
if the balloon is small. The balloon can easily be deformed.

The pressure in the air inside the balloon can be decreased with the aid of a vacuum pump. If the under pressure achieved by the pump is almost equal
to the atmospheric pressure, i.e. 1 bar or about 100 kPa, the total stress remains ¢ = p, = 100 kPa, but the pressure in the air is reduced to p = 0 kPa, so
that the effective stress becomes ¢’ = ¢ — p = p, = 100 kPa. There are now reasonably large forces in the contact points of the particles. This results in a
considerable stiffness of the balloon. It appears as if there is a stone inside the balloon. Sometimes coffee is packaged in this way, using an under pressure
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in a plastic bag. It is assumed that the coffee remains fresh in this way.

Note : in engineering practice all stresses are often considered with respect to the atmospheric pressure. In the first situation this means that both the
total stress and the effective stress are zero; in the second situation the total stress is zero, but the pore pressure is p = —100 kPa, so that the effective
stress is ¢’ = 100 kPa, which is (of course) the same value as obtained previously.

Example 4.2

An astronaut takes a package of vacuum packed coffee into a spaceship and then to the moon. On earth the effective stress keeping the package stiff is
about atmospheric pressure, say ¢’ = 100 kPa, assuming that the vacuum is complete.

In the spaceship an artificial atmosphere is maintained, so that the astronauts can move freely. Then the package remains very stiff. However, on the
moon there is practically no atmospheric pressure (check this statement in an encyclopedia or on the internet, and try to understand the reasons), so that the
zero pressure in the pore space is equal to the total stress outside. The effective stress then is reduced to practically zero, and the package looses all its rigidity.

Example 4.3

If a package of vacuum packed coffee is dropped into a lake, and sinks to a depth of 10 m, the total stress increases with about 100 kPa, taking into account
that the unit weight of water is about 7, = 10 kN/mg, As the pore pressure remains the same, the effective stress increases to about ¢’ = 200 kPa, which
makes the package about twice as stiff.

Note that in reality the package will probably float in the water !

Example 4.4

A treasure hunter wants to remove a collection of antique Chinese plates from a sunken ship. Under water the divers must lift the plates very carefully, of
course, to avoid damage. It may be useful to consider whether it is important to know the depth below water of the ship in order to estimate the risk of
damages. For this purpose it can be argued that the total stress below the first plate will be o = v h + 7.d, where h is the depth below sea level, 7. is the
unit weight of the plates, and d is the thickness of a plate. The water pressure at that depth is p = 7., (h + d), so that the effective stress is 0’ = (Ve — Yw)d,
which is independent of the water depth h. The force between the first two plates is just the weight of one plate, under water.

Example 4.5

The bottom of a lake consists of sand. The water level in the lake rises by an amount Ah, so that the water pressure at the bottom is increased. One
might think that this increase of pressure will result in a subsidence of the bottom of the lake by deformation of the sand. This is not so, however, as can
be understood by noting that both the total stress and the pore pressure will increase, at all depths below the soil surface, by an amount ~,,Ah, indicating
that the effective stresses remain the same, so that there will be no deformation of the soil.



Chapter 5

STRESSES IN A LAYER

5.1 Vertical stresses

In many places on earth the soil consists of practically horizontal layers. If such a soil does not carry a local surface load, and if the groundwater
is at rest, the vertical stresses can be determined directly from a consideration of vertical equilibrium. The procedure is illustrated in this chapter.

A simple case is a homogeneous layer, completely saturated with water, see Figure 5.1. The pressure in the water is determined by the
location of the phreatic surface. This is defined as the plane where the pressure in the groundwater is equal to the atmospheric pressure.
If the atmospheric pressure is taken as the zero level of pres-
P el SRR 02z sures, as is usual, it follows that p = 0 at the phreatic surface.
If there are no capillary effects in the soil, this is also the upper
boundary of the water, which is denoted as the groundwater
table. In the example it is assumed that the phreatic surface
coincides with the soil surface, see Figure 5.1. The volumetric
d weight of the saturated soil is supposed to be v = 20 kN/m?3.
The vertical normal stress in the soil now increases linearly with
depth,

0.z = 7yd. (5.1)

/!

}\ ’ ] I I ]\ ’ P T2z This is a consequence of vertical equilibrium of a column of soil
z of height d. It has been assumed that there are no shear stresses
on the vertical planes bounding the column in horizontal direc-
tion. That seems to be a reasonable assumption if the terrain

is homogeneous and very large, with a single geological history. Often this is assumed, even when there are no data.
At a depth of 10 m, for instance, the vertical total stress is 200 kN/m? = 200 kPa. Because the groundwater is at rest, the pressures in the
water will be hydrostatic. The soil can be considered to be a container of water of very complex shape, bounded by all the particles, but that is
irrelevant for the actual pressure in the water. This means that the pressure in the water at a depth d will be equal to the weight of the water

Figure 5.1: Stresses in a homogeneous layer.

33
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in a column of unit area, see also Figure 4.3,
P = Ywd, (5.2)
where 7, is the volumetric weight of water, usually v, = 10 kN/m?. It now follows that a depth of 10 m the effective stress is 200 kPa-

100 kPa=100 kPa.
Formally, the distribution of the effective stress can be found from the basic equation ¢’,, = o,, — p, or, with (5.1) and (5.2),

oL, = (v = w)d. (5.3)
The vertical effective stresses appear to be linear with depth. That is a consequence of the linear distribution of the total stresses and the pore
pressures, with both of them being zero at the same level, the soil surface.

It should be noted that the vertical stress components, both the total stress and the effective stress, can be found using the condition of vertical
equilibrium only, together with the assumption that the shear stresses are zero on vertical planes. The
horizontal normal stresses remain undetermined at this stage. Even by also considering horizontal
equilibrium these horizontal stresses can not be determined. A consideration of horizontal equilibrium,
see Figure 5.2, does give some additional information, namely that the horizontal normal stresses on the
e <~ two vertical planes at the left and at the right must be equal, but their magnitude remains unknown.
The determination of horizontal (or lateral) stresses is one of the essential difficulties of soil mechanics.
Because the horizontal stresses can not be determined from equilibrium conditions they often remain
unknown. It will be shown later that even when also considering the deformations, the determination
of the horizontal stresses remains very difficult, as this requires detailed knowledge of the geological

Figure 5.2: Equilibrium. history, which is usually not available. Perhaps the best way to determine the horizontal stresses is by
direct or indirect measurement in the field. The problem will be discussed further in later chapters.

The simple example of Figure 5.1 may be used as the starting point for more complex cases. As a second example the situation of a
somewhat lower phreatic surface is considered, say when it is lowered by 2 m. This may be caused by the action of a pumping station
in the area, such that the water level in the canals and the ditches in a polder is to be kept at a level
of 2 m below the soil surface. In this case there are two possibilities, depending upon the size of the
particles in the soil. If the soil consists of very coarse material, the groundwater level in the soil will
coincide with the phreatic surface (the level where p = 0), which will be equal to the water level in
the open water, the ditches. However, when the soil is very fine (for instance clay), it is possible that
the top of the groundwater in the soil (the groundwater level) is considerably higher than the phreatic
level, because of the effect of capillarity. In the fine pores of the soil the water may rise to a level
above the phreatic level due to the suction caused by the surface tension at the interface of particles,
water and air. This surface tension may lead to pressures in the water below atmospheric pressure,
Figure 5.3: Capillary rise. i.e. negative water pressures. The zone above the phreatic level is denoted as the capillary zone. The

maximum height of the groundwater above the phreatic level is denoted as h,, the capillary rise.
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If the capillary rise h. in the example is larger than 2 meter, the soil in the polder will remain saturated when the water table is lowered by 2 me-
ter. The total stresses will not change, because the weight of the soil remains the same, but the pore pressures throughout the soil are reduced by
Yw % 2m =20 kN/m?. This means that the effective

stresses are increased everywhere by the same amount,

i Oz see Figure 5.4.
2 m
N Lowering the phreatic level appears to lead to an increase
of the effective stresses. In practice this will cause defor-
mations, which will be manifest by a subsidence of the
8 m ground level. This indeed occurs very often, wherever the

groundwater table is lowered. Lowering the water table
to construct a dry building pit, or lowering the ground-
water table in a newly reclaimed polder, leads to higher
effective stresses, and therefore settlements. This may be
1\ ] ] I I ]\ ’_ - p o accompanied by severe damage to buildings and houses,

especially if the settlements are not uniform. If the subsi-
dence is uniform there is less risk for damage to structures
founded on the soil in that area.

Lowering the phreatic level may also have some pos-
itive consequences. For instance, the increase of the ef-
fective stresses at the soil surface makes the soil much stiffer and stronger, so that heavier vehicles (tractors or other agricultural machines) can
be supported. In case of a very high phreatic surface, coinciding with the soil surface, as illustrated in Figure 5.1, the effective stresses at the
surface are zero, which means that there is no force between the soil particles. Man, animal and machine then can not find support on the soil,
and they may sink into it. The soil is called soggy or swampy. It seems natural that in such cases people will be motivated to lower the water
table. This will result in some subsidence, and thus part of the effect of the lower groundwater table is lost. This can be restored by a further
lowering of the water table, which in turn will lead to further subsidence. In some places on earth the process has had almost catastrophic
consequences (Venice, Bangkok). The subsidence of Venice, for instance, was found to be caused for a large part by the production of ever
increasing amounts of drinking water from the soil in the immediate vicinity of the city. Further subsidence has been reduced by finding a water
supply farther from the city.

When the soil consists of very coarse material, there will practically be no capillarity. In that case lowering the phreatic level by 2 meter will
cause the top 2 meter of the soil to become dry, see Figure 5.5. The upper 2 meter of soil then will become lighter. A reasonable value for the
dry volumetric weight is 74 = 16 kN/m3. At a depth of 2 m the vertical effective stress now is o/, = 32 kPa, and at a depth of 10 m the effective
stress is o/, = 112 kPa. It appears that in this case the effective stresses increase by 12 kPa, compared to the case of a water table coinciding with
the ground surface. The distribution of total stresses, effective stresses and pore pressures is shown in Figure 5.5. Again there will be a tendency

z

Figure 5.4: Lowering the phreatic surface by 2 m, with capillary rise.
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for settlement of the soil. In later chapters a pro-
il S Ozz cedure for the calculation of these settlements will
2m be presented. For this purpose first the relation be-
e R S tween effective stress and deformation must be consid-
ered.

Subsidence of the soil can also be caused by the extrac-

tion of gas or oil from soil layers. The reservoirs con-

taining oil and gas are often located at substantial depth

(in Groningen at 2000 m depth). These reservoirs usu-

oy ally consist of porous rock, that have been consolidated

1\ ’ ] ] T ]\ ’ p o through the ages by the weight of the soil layers above

it, but some porosity (say 10 % or 20 %) remains, filled

with gas or oil. When the gas or oil is extracted from the

Figure 5.5: Lowering of the phreatic surface by 2 m, no capillarity. reservoir, by reducing the pressure in the fluid, the effec-

tive stresses increase, and the thickness of the reservoir

will be reduced. This will cause the soil layers above the

reservoir to settle, and it will eventually give rise to subsidence of the soil surface. In Groningen the subsidence above the large gas reservoir is

estimated to reach about 50 cm, over a very large area. All structures subside with the soil, with not very much risk of damage, as there are no

large local variations to be expected. However, because the soil surface is below sea level, great care must be taken to maintain the drainage

capacity of the hydraulic infrastructure. Sluices may have to be renewed because they subside, whereas water levels must be maintained. The
dikes also have to be raised to balance the subsidence due to gas production.

z

In some parts of the world subsidence may have very serious consequences, for instance in areas of coal mining activities. In mining the
entire soil is being removed, and sudden collapse of a mine gallery may cause great damage to the structures above it.

5.2 The general procedure

It has been indicated in the examples given above how the total stresses, the effective stresses and the pore pressures can be determined on a
horizontal plane in a soil consisting of practically horizontal layers. In most cases the best general procedure is that first the total stresses are
determined, from the vertical equilibrium of a column of soil. The total stress then is determined by the total weight of the column (particles
and water), plus an eventual surcharge caused by a structure. In the next step the pore pressures are determined, from the hydraulic conditions.
If the groundwater is at rest it is sufficient to determine the location of the phreatic surface. The pore pressures then are hydrostatic, starting
from zero at the level of the phreatic surface, i.e. linear with the depth below the phreatic surface. When the soil is very fine a capillary zone
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may develop above the phreatic surface, in which the pore pressures are negative. The maximum negative pore pressure depends upon the size

FR0NT

UZZ

Ik

Figure 5.6: Example.

pressures is shown in Figure 5.6.

of the pores, and can be measured in the laboratory. As-
suming that there are sufficient data to determine the
pore pressures, the effective stresses can be determined
as the difference of the total stresses and the pore pres-
sures.

A final example is shown in Figure 5.6. This concerns
a layer of 10 m thickness, carrying a surcharge of 50 kPa.
The phreatic level is located at a depth of 5 m, and it has
been measured that in this soil the capillary rise is 2 m.
The volumetric weight of the soil when dry is 16 kN/m?,
and when saturated it is 20 kN/m3. Using these data it
can be concluded that the top 3 m of the soil will be dry,
and that the lower 7 m will be saturated with water. The
total stress at a depth of 10 m then is 50 kPa + 3 m X
16 kN/m?® + 7 m x 20 kN/m?3 = 238 kPa. At that depth
the pore pressure is 5 m x 10 kN/m?3 = 50 kPa. It follows
that the effective stress at 10 m depth is 188 kPa. The
distribution of total stresses, effective stresses and pore

It should be noted that throughout this chapter it has been assumed that the groundwater is at rest, so that the pressure in the groundwater
is hydrostatic. When the groundwater is flowing this is not so, and more data are needed to determine the pore pressures. For this purpose the

flow of groundwater is considered in the next chapters.

Example 5.1

A lake is being reclaimed by lowering the water table below the bottom of the lake. The soil consists of 10 meter of homogeneous clay, having a saturated
volumetric weight of 18 kN/m?3. Below the clay the soil is sand. Initially the water level is 2 m above the soil surface, after the reclamation the phreatic
level is at 2 m below the soil surface, and it is assumed that soil remains saturated. Construct graphs of total stresses, effective stresses and pore pressures

before and after the reclamation.
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Figure 5.7: Stresses before and after lowering the water table.

Solution

The stresses in the initial state are shown in the left half of Figure 5.7. The stresses in the final state are shown in the right half of the figure.

For the stresses in the initial state the total stresses can best be calculated first. At a depth of -2 m: 0., = 0, and at a depth of 0 m: 0, =y *2 m =
20 kPa. The top layer is 10 m of clay, with a unit weight of 18 kN/m3. This means that at a depth of 10 m: o,, = 200 kPa. Below that level the soil is
sand, with a unit weight of 20 kN/m?, so that at a depth of 15 m: o, = 300 kPa.

Next the pore pressures can be calculated. At a depth of -2 m: p = 0, and then the pore pressure increases hydrostatically with depth, so that for
instance at a depth of 10 m: p = 120 kPa.

The effective stresses can finally be determined using the relation 0., = 0., — p. At a depth of 10 m: o., = 80 kPa.

In the final state the total stresses start at the surface z = 0, and then at a depth of 10 m: 0., = 180 kPa, and at a depth of 15 m: 0., = 280 kPa.

The pore pressures now are zero at a depth of 2 m, but above that level it is given that the soil remains saturated, so that negative pore pressures will
be developed. The distribution of the pore pressures in the final state will again by hydrostatic. This means that at a depth of 10 m: p = 80 kPa. At the
soil surface the pore pressure will be p = —20 kPa.

Again the effective stresses can be determined as the difference of the total stresses and the pore pressures, 0., = 0., — p. At a depth of 10 m:
o', = 100 kPa.

It may be noted that the total stresses decrease, but the pore pressures decrease even more, so that the effective stresses increase. For instance at a depth
of 10 m the initial effective stress is 80 kPa, and the final effective stress is 100 kPa. This means that the soil will be compressed, and subsidence of the soil
surface can be expected.
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Example 5.2

A concrete caisson having a mass of 5000 ton, a foundation surface of 20 m x 20 m, and a height of 10 m, is being placed on dry sand. Calculate the average
total stress and the average effective stress just below the caisson.

Solution

The total force on the soil is FF = M X g, where M is the mass of the caisson, and g is the gravity constant, which is approximately g = 10 N/kg. In this
case it follows that F' = 5000 x 1000 x 10 = 50 x 10° N = 50000 kN. Because the area of the bottom of the caisson is 400 m? the average total stress is
0., = 125 kPa. There is no water in the soil, so that the pore pressure is zero, and the effective stress is equal to the total stress.

Example 5.3

A similar caisson is placed in open water, on a layer of sand. The water level is 5 m above the top of the sand, so that the top of the caisson is 5 m above
water. Again calculate the average total stress and the average effective stress just below the caisson.

Solution

In this case the total stress is the same as in the previous case, 0., = 125 kPa. The pore pressure in the soil just below the caisson is p = 50 kPa (the
pressure caused by 5 m of water). The effective stress now is o, = 0.. —p = 75 kPa.

It may be noted that this last answer can also be obtained directly by subtracting the upward buoyancy force on the caisson from its weight, i.e.
F’ = 50000 — 20000 = 30000 kPa, and then dividing this by the area of the caisson. This may be faster, but it is recommended to always determine the
effective stress as the difference of the total stress and the pore pressure, because this can be more easily generalized, for instance to problems involving
flowing groundwater.

Problem 5.1 A certain soil has a dry volumetric weight of 15.7 kN/m?®, and a saturated volumetric weight of 21.4 kN/m®. The phreatic level is at 2.5 m
below the soil surface, and the capillary rise is 1.3 m. Calculate the vertical effective stress at a depth of 6.0 m, in kPa.

Problem 5.2 A layer of saturated clay has a thickness of 4 m, and a volumetric weight of 18 kN/m?®. Above this layer a sand layer is located, having a
dry volumetric weight of 16 kN/ m? and a saturated volumetric weight of 20 kN / m3. The groundwater level is at a depth of 1 m below soil surface, which is
the top of the sand layer. There is no capillary rise in the sand, and the pore pressures are hydrostatic. Calculate the average effective stress in the clay, in kPa.

Problem 5.3 The soil in the previous problem is loaded by a surcharge of 2 m of the same sand. The groundwater level is maintained. Calculate the
increase of the average effective stress in the clay, in kPa.



Chapter 6

DARCY’S LAW

6.1 Hydrostatics

As already mentioned in earlier chapters, the stress distribution in groundwater at rest follows the rules of hydrostatics. More precise it can be
stated that in the absence of flow the stresses in the fluid in a porous medium must satisfy the equations of equilibrium in the form
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Here it has been assumed that the z-axis is pointing vertically upward. The quantity -, is the volumetric weight of the water, which is
Yw ~ 10 kN/m?. Tt has further been assumed that there are no shear stresses in the water. This is usually a very good approximation. Water is a
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Figure 6.1: Equilibrium of water.

viscous fluid, and shear stresses may occur in it, but only when the fluid is moving, and it has been assumed
that the water is at rest. Furthermore, even when the fluid is moving the shear stresses are very small
compared to the normal stress, the fluid pressure.

The first two equations in (6.1) mean that the pressure in the fluid can not change in horizontal direction.
This is a consequence of horizontal equilibrium of a fluid element, see Figure 6.1. Equilibrium in vertical
direction requires that the difference of the fluid pressures at the top and bottom of a small element balances
the weight of the fluid in the element, i.e. Ap = —v,,Az. Here Az represents the height of the element. By
passing into the limit Az — 0 the third equation of the system (6.1) follows.

The value of the volumetric weight ~,, in the last of egs. (6.1) need not be constant for the equations to
be valid. If the volumetric weight is variable the equations are still valid. Such a variable density may be
the result of variable salt contents in the water, or variable temperatures. It may even be that the density is

discontinuous, for instance, in case of two different fluids, separated by a sharp interface. This may happen for oil and water, or fresh water and
salt water. Even in those cases the equations (6.1) correctly express equilibrium of the fluid.
In soil mechanics the fluid in the soil usually is water, and it can often be assumed that the groundwater is homogeneous, so that the

40
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volumetric weight v,, is a constant. In that case the system of equations (6.1) can be integrated to give
p=—Yuwz+C, (6.2)

where C' is an integration constant. Equation (6.2) means that the fluid pressure is completely known if the integration constant C' can be
found. For this it is necessary, and sufficient, to know the water pressure in a single point. This may be the case if the phreatic surface has been
observed at some location. In that point the water pressure p = 0 for a given value of z.

The location of the phreatic surface in the soil can be determined from the water level in a ditch or pond, if it is known that there is no, or practi-
cally no, groundwater flow. In principle the phreatic surface could be determined by digging a hole in the ground, and then wait until the water has
come to rest. It is much more accurate, and easier, to determine the
phreatic surface using an open standpipe, see Figure 6.2. A standpipe is
a steel tube, having a diameter of for instance 2.5 cm, with small holes at
the bottom, so that the water can rise in the pipe. Such a pipe can easily
— be installed into the ground, by pressing or eventually by hammering it

into the ground. The diameter of the pipe is large enough that capillary

effects can be disregarded. After some time, during which the water has to

flow from the ground into the pipe, the level of the water in the standpipe

indicates the location of the phreatic surface, for the point of the pipe.
P Because this water level usually is located below ground surface, it can

not be observed with the naked eye. The simplest method to measure the

water level in the standpipe is to drop a small iron or copper weight into
the tube, at the end of a flexible cord. As soon as the weight touches the water surface, a sound can be heard, especially by holding an ear close
to the end of the pipe. The depth of the water can be determined by measuring the length of the cord that went into the standpipe.

Figure 6.2: Standpipe.

Of course, the measurement can also be made by accurate electronic measuring devices. Electronic pore pressure meters measure the pressure
in a small cell, by a flexible membrane and a strain gauge, glued onto the membrane. The water presses against the membrane, and the strain
gauge measures the small deflection of the membrane. This can be transformed into the value of the pressure if the device has been calibrated
before.

6.2 Groundwater flow
The hydrostatic distribution of pore pressures is valid when the groundwater is at rest. When the groundwater is flowing through the soil the

pressure distribution will not be hydrostatic, because then the equations of equilibrium (6.1) are no longer complete. The flow of groundwater
through the pore space is accompanied by a friction force between the flowing fluid and the soil skeleton, and this must be taken into account.
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This friction force (per unit volume) is denoted by f. Then the equations of equilibrium are

Figure 6.3: Forces.

o

Oz 7fz:03

Op B

aiyifyfo’ (63)
dp B

%+7w7fz =0.

Here f,, fy and f, are the components of the force, per unit volume, exerted onto the soil skeleton by the
flowing groundwater. The sign of these terms can be verified by considering the equilibrium in one of the
directions, say the z-direction, see Figure 6.3. If the pressure increases in z-direction there must be a force
in positive z-direction acting on the water to ensure equilibrium. Both terms in the equation of equilibrium
then are positive, so that they cancel.

It may be mentioned that in the equations the accelerations of the groundwater might also be taken into
account. This could be expressed by terms of the form pa.., pa, en pa. in the right hand sides of the equations.
Such terms are usually very small, however. It may be noted that the velocity of flowing groundwater usually
is of the order of magnitude of 1 m/d, or smaller. If such a velocity would be doubled in one hour the
acceleration would be (1/24) x (1/3600)% m/s?, which is extremely small with respect to the acceleration
of gravity g, which also appears in the equations. In fact the acceleration terms would be a factor 3 x 103

smaller, and therefore may be neglected.

It seems probable that the friction force between the particles and the water depends upon the velocity of the water, and in particular such
that the force will increase with increasing velocity, and acting in opposite direction. It can also be expected that the friction force will be larger,
at the same velocity, if the viscosity of the fluid is larger (the fluid is then more sticky). From careful measurements it has been established that
the relation between the velocity and the friction force is linear, at least as a very good first approximation. If the soil has the same properties
in all directions (i.e. is isotropic) the relations are

1
f:L’ = —— Yz,
K
1
fy = e (6.4)
1
fz = 4.
K

Here ¢, g, and ¢, are the components of the specific discharge, that is the discharge per unit area. The precise definition of g, is the discharge
(a volume per unit time) through a unit area perpendicular to the z-direction, ¢, = Q/A, see Figure 6.4. This quantity is expressed in m3/s
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per m?, a discharge per unit area. In the SI-system of units that reduces to m/s. It should be noted that this is not the average velocity of the
groundwater, because for that quantity the discharge should be divided by the area of the pores only, and that area is a factor n smaller than
the total area. The specific discharge is proportional to the average velocity, however,

v =q/n. (6.5)

The fact that the specific discharge is expressed in m/s, and its definition is a discharge per unit area, may give
rise to confusion with the velocity. This confusion is sometimes increased by denoting the specific discharge

- — q as the filter velocity, the seepage velocity or the Darcian velocity. Such terms can better be avoided: it
. e should be denoted as the specific discharge.
- It may be interesting to note that in the USA the classical unit of volume of a fluid is the gallon (3.785 liter),
e so that a discharge of water is expressed in gallon per day, gpd. An area is expressed in square foot (1 foot

= 30 cm), and therefore a specific discharge is expressed in gallons per day per square foot (gpd/sqft). That

may seem an antique type of unit, but at least it has the advantage of expressing precisely what it is: a

Figure 6.4: Specific discharge. discharge per unit area. There is no possible confusion with a velocity, which in the USA is usually expressed
in miles per hour, mph.

Equation (6.4) expresses that there is an additional force in the equations of equilibrium proportional to the specific discharge (and hence
proportional to the velocity of the water with respect to the particles, as intended). The constant of proportionality has been denoted by u/k,
where p is the dynamic viscosity of the fluid, and & is the permeability of the porous medium. The factor 1/k is a measure for the resistance of
the porous medium. In general it has been found that  is larger if the size of the pores is larger. When the pores are very narrow the friction
will be very large, and the value of xk will be small.

Substitution of equations (6.4) into (6.3) gives

In contrast with equations (6.1), which may be used for an infinitely small element, within a single pore, equations (6.6) represent the equations
of equilibrium for an element containing a sufficiently large number of pores, so that the friction force can be represented with sufficient accuracy
as a factor proportional to the average value of the specific discharge. It may be noted that the equations (6.6) are also valid when the volumetric
weight ~,, is variable, for instance due to variations of salt content, or in the case of two fluids (e.g. oil and water) in the pores. That can easily
be demonstrated by noting that these equations include the hydrostatic pressure distribution as the special case for zero specific discharge, i.e.
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for the no flow case.

The equations (6.6) can also be written as

K, Op

K, Op
=——(=), 6.7
0= —2(3D) (67

K Op

These equations enable to determine the components of the specific discharge if the pressure dis-
tribution is known.

The equations (6.7) are a basic form of Darcy’s law. They are named after the city engineer of
the French town Dijon, who developed that law on the basis of experiments in 1856. Darcy designed
the public water works of the town of Dijon, by producing water from the ground in the center of
town. He realized that this water could be supplied from the higher areas surrounding the town, by
= flowing through the ground. In order to assess the quantity that could be produced he needed the

Bt e == permeability of the soil, and therefore measured it. The grateful citizens of Dijon honored him by

erecting a monument, and by naming the central square of the town the Place Henry Darcy.

Figure 6.5: Place Henry Darcy. The equations (6.7) are generally valid, also if the volumetric weight ~,, of the fluid is not constant.

In civil engineering many problems are concerned with a single fluid, fresh water, and the volumetric
weight can then be considered as constant. In that case it is convenient to introduce the groundwater head h, defined as

p
h=z+—. 6.8
Yw (6.8)
If the volumetric weight -,, is constant it follows that
oh _ 1 o,
0r 7y Oz’
oh 1 0p
— = (=), 6.9
e ( ay) (6.9)
@ 1 0p

2~ 7.\8:
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Using these relations Darcy’s law, egs. (6.7), can also be written as

oh
= —l{ji
qx oz’
oh
=—k— 6.10
qy By ) ( )
oh
=—k—.
qz 2
The quantity k in these equations is the hydraulic conductivity, defined as
KYw
k=—. 6.11
m (6.11)

It is sometimes denoted as the coefficient of permeability. The permeability « then should be denoted as the intrinsic permeability to avoid
confusion.
Darcy himself wrote his equations in the simpler form of eq. (6.10). For engineering practice that is a convenient form of the equations,
because the groundwater head h can often be measured rather simply, and because the equations
z are of a simple character, and are the same in all three directions. It should be remembered,
however, that the form 6.7 is more fundamentally correct. If the volumetric weight ~,, is not
constant, only the equations (6.7) can be used. The definition (6.8) then does not make sense.
The concept of groundwater head can be illustrated by considering a standpipe in the soil,
see Figure 6.6. The water level in the standpipe, measured with respect to a certain horizontal
P/ Vw level where z = 0, is the groundwater head h in the point indicated by the open end of the
standpipe. In the standpipe the water is at rest, and therefore the pressure at the bottom end of
the pipe is p = (h — 2)7yw, so that h = z+4p/~,,, in agreement with (6.8). When the groundwater
Py head is the same in every point of a soil mass, the groundwater will be at rest. If the head is
»  not constant, however, the groundwater will flow, and according to eq. (eq:darcy:gh) it will flow
from locations with a large head to locations where the head is low. If the groundwater head
Figure 6.6: Groundwater head. difference is not maintained by some external influence (rainfall, or wells) the water will tend
towards a situation of constant head.
Darcy’s law can be written in an even simpler form if the direction of flow is known, for instance if the water is flowing through a narrow
tube, filled with soil. The water is then forced to flow in the direction of the tube. If that directions is the s-direction, the specific discharge in
that direction is, similar to (6.10),
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dh
ds’
The quantity dh/ds is the increase of the groundwater head per unit of length, in the direction of flow. The minus sign expresses that the water

flows in the direction of decreasing head. This is the form of Darcy’s law as it is often used in simple flow problems. The quantity dh/ds is
called the hydraulic gradient 1,

q= (6.12)

dh

= —, 1
i=— (6.13)

It is a dimensionless quantity, indicating the slope of the phreatic surface.

Seepage force

It has been seen that the flow of groundwater is accompanied by a friction between the water and the particles. According to (6.3) the friction
force (per unit volume) that the particles exert on the water is

0
fo= 301
fy = %7 (6.14)
fz= % + Y-
With h = z 4 p/~,, this can be expressed into the groundwater head h, assuming that 7, is constant,
Oh
fo = Ww%,
fy= %%Z, (6.15)
oh
fz= %ua-

The force that the water exerts on the soil skeleton is denoted by j. Because of Newton’s third law (the principle of equality of action and
reaction), this is just the opposite of the f. The vector quantity j is denoted as the seepage force, even though it is actually not a force, but a
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force per unit volume. It now follows that

, oh
Jz = _'Vw%a
, oh
Jy = _’Vwaiya (616)
. __, ok
Je = Ty,

The seepage force is especially important when considering local equilibrium in a soil, for instance when investigating the conditions for internal
erosion, when some particles may become locally unstable because of a high flow rate.

Example 6.1

In the USA the unit gpd/sqft (gallon per day per square foot) is sometimes used to measure the hydraulic conductivity k, and the specific discharge ¢. In
Europe the standard unit is m/s (meter per second), following the unification initiated by Napoleon around 1800. This is believed to be more convenient,
but the unit gpd/sqft has the advantage that the magnitude of a value is easier to imagine. Furthermore European engineers may be tempted to think that
the specific discharge is a velocity, because it is expressed in m/s. However, it is not, as the average velocity is v = q/n, where n is the porosity. American
engineers will not have that idea, because they are used to express a velocity in mph, and that seems to be quite different from gpd/sqft.

What is the relation between the two units ?

Solution

Because 1 (US) gallon = 0.0037854 m®, 1 sqft = 0.0929 m? and 1 day = 86400 s, it follows that 1 gpd/sqft = 0.4716 x 107° m/s.

Problem 6.1 In geohydrology the unit m/d is often used to measure the hydraulic conductivity k. What is the relation with the SI-unit m/s?

Problem 6.2 A certain soil has a hydraulic conductivity ¥ = 5 m/d. This value has been measured in summer. In winter the temperature is much lower,
and if it is supposed that the viscosity p then is a factor 1.5 as large as in summer, determine the value of the hydraulic conductivity in winter.



Chapter 7

PERMEABILITY

7.1 Permeability test

In the previous chapter Darcy’s law for the flow of a fluid through a porous medium has been formulated, in its simplest form, as

dh
k

ko (7.1)

q:

This means that the hydraulic conductivity &k can be determined if the specific discharge ¢ can be measured in a test in which the gradient dh/ds
is known. An example of a test setup is shown in Figure 7.1. It consists of a glass tube,

- filled with soil. The two ends are connected to small reservoirs of water, the height of
Ah which can be adjusted. In these reservoirs a constant water level can be maintained.
Under the influence of a difference in head Ah between the two reservoirs, water will flow
- through the soil. The total discharge () can be measured by collecting the volume of water
Ejo in a certain time interval. If the area of the tube is A, and the length of the soil sample
_________ o is AL, then Darcy’s law gives
)
Q= /<:AM (7.2)

AL’

Because Q@ = gA this formula is in agreement with (7.1). Darcy performed tests as shown
in Figure 7.1 to verify his formula (7.2). For this purpose he performed tests with various
values of Ah, and indeed found a linear relation between Q and Ah. The same test is still
used very often to determine the hydraulic conductivity (coefficient of permeability) k.

For sand normal values of the hydraulic conductivity k range from 107% m/s to
1072 m/s. For clay the hydraulic conductivity usually is several orders of magnitude
smaller, for instance & = 107? m/s, or even smaller. This is because the permeability
is approximately proportional to the square of the grain size of the material, and the
particles of clay are about 100 or 1000 times smaller than those of sand. An indication of
the hydraulic conductivity of various soils is given in Table 7.1.

AL

Figure 7.1: Permeability test.

48
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Type of soil k (m/s)
gravel 1073 - 107!
sand 1076 — 1073
silt 1078 —1076
clay 10719 —10-8

Table 7.1: Hydraulic conductivity k.

As mentioned before, the permeability also depends upon properties of the fluid. Water will flow more easily through the soil than a thick oil.

This is expressed in the formula (6.11),

KYw
kj = 7’ 7~3
1 (7.3)

where 4 is the dynamic viscosity of the fluid. The quantity « (the intrinsic permeability) depends upon the geometry of the grain skeleton only.
A useful relation is given by the formula of Kozeny-Carman,

R il

Figure 7.2: Failure of Teton Dam.

TL3

2
K =cd 7(1_71)2.

(7.4)

Here d is a measure for the grain size, and c is a coefficient, that now only depends upon the
tortuosity of the pore system, as determined by the shape of the particles. Its value is about
1/200 or 1/100. Equation (7.4) is of little value for the actual determination of the value of the
permeability x, because the value of the coefficient c is still unknown, and because the hydraulic
conductivity can easily be determined directly from a permeability test. The Kozeny-Carman
formula (7.4) is of great value, however, because it indicates the dependence of the permeability
on the grain size and on the porosity. The dependence on d? indicates, for instance, that two
soils for which the grain size differs by a factor 1000 (sand and clay) may have a difference in
permeability of a factor 10%. Such differences are indeed realistic.

The large variability of the permeability indicates that this may be a very important param-
eter. In constructing a large dam, for instance, the dam is often built from highly permeable
material, with a core of clay. This clay core has the purpose to restrict water losses from the
reservoir behind the dam. If the core is not very homogeneous, and contains thin layers of sand,



50 A. Verruijt, Soil Mechanics : 7. PERMEABILITY

or if the clay core is not well encased into the rock bottom, the function of the clay core is disturbed to a high degree, and large amounts of
water may be leaking through the dam. Severe accidents of this type have happened, see for instance Figure 7.2, which shows the collapse of
the Teton Dam, in Idaho, USA, in 1976, photographed by Mrs. Eunice Olson.

7.2 Falling head test

For soils of low permeability, such as clay, the normal permeability test shown in Figure 7.1 is not suitable, because only very small quantities of
fluid are flowing through the soil, and it would take very long to collect an appreciable volume of water. For such soils a test set up as illustrated in
Figure 7.3, the falling head test, is more suitable. In this apparatus a clay sample is
enclosed by a circular ring, placed in a container filled with water. The lower end of the
e sample is in open connection with the water in the container, through a porous stone
below the sample. At the top of the sample it is connected to a thin glass tube, in which
the water level is higher than the constant water level in the container. Because of this
h difference in water level, water will flow through the sample, in very small quantities, but
sufficient to be observed by the lowering of the water level in the thin tube.
In this case the head difference h is not constant, because no water is added to the
system, and the level h is gradually reduced. This water level is observed as a function of
time. On the basis of Darcy’s law the discharge is

kAh
oo b ‘ Q=— (7.5)
/ ! f If the cross sectional area of the glass tube is a it follows that
dh
. . Q=—aZl. (7.6)
Figure 7.3: Falling head test. dt
Elimination of @ from these two equations gives
dh _ kA -
dt  alL '
This is a differential equation for h, that can easily be solved,
h = hgexp(—kAt/alL). (7.8)

where hg is the value of the head difference h at time ¢ = 0. If the head difference at time ¢ is h, the hydraulic conductivity k£ can be calculated

from the relation L
g 2L (o 7.9
At () (7.9)
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If the area of the tube a is very small compared to the area A of the sample, it is possible to measure relatively small values of k& with sufficient
accuracy. The advantage of this test is that very small quantities of flowing water can be measured.

It may be remarked that the determination of the hydraulic conductivity of a sample in a laboratory is relatively easy, and very accurate,
but large errors may occur during sampling of the soil in the field, and perhaps during the transportation from the field to the laboratory.
Furthermore, the measured value only applies to that particular sample, having small dimensions. This value may not be representative for the
hydraulic conductivity in the field. In particular, if a thin layer of clay has been overlooked, the permeability of the soil for vertical flow may be
much smaller than follows from the measurements. On the other hand, if it is not known that a clay layer contains pockets of sand, the flow in
the field may be much larger than expected on the basis of the permeability test on the clay. It is often advisable to measure the permeability
in the field (in situ), measuring the average permeability of a sufficiently large region.

Example 7.1

In a permeability test (see Figure 7.1) a head difference of 20 cm is being maintained between the top and bottom ends of a sample of 40 cm height. The
inner diameter of the circular tube is 10 cm. It has been measured that in 1 minute an amount of water of 35 cm?® is collected in a measuring glass. What
is the value of the hydraulic conductivity k7

Solution

In this case the gradient is 4+ = —20/40 = —0.5. The discharge is Q@ = 35 cm®/60 s = 0.5833 cm®/s. The area of a cross section of the tube is
7% (5 cm)? = 78.54 cm?. This means that the specific discharge is ¢ = 7.426 * 1072 cm/s. Because ¢ = —ki it follows that k = 0.0148 cm/s.

Example 7.2
l l l i l A circular glass tube is filled with 20 cm of sand, having a hydraulic conductivity of 1075 m/s,
and on top of that 20 cm sand having a hydraulic conductivity that is a factor 4 larger, see
Figure 7.4. The inner diameter of the circular tube is 10 cm. Calculate the discharge @
through this layered sample, if the head difference between the top and bottom of the sample is
20 cm.
Solution

ERRE

. . In this case the water must flow through two media, in series,
Figure 7.4: Two-layered soil.

Q1 = k1A1Ah1/A51, QQ = kQAQAhQ/ASQ.
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Continuity of flow requires that Q1 = Q2 = @. Furthermore it is given that A1 = Ay = A = 78.54 cm2, Asy = As; = As = 20 cm and ko = 4k =
4%1073 cm/s, and it is also given that Ahy + Ahe = 20 cm.
The simplest way to solve this problem is to express the total head difference Ah as

Q AS1 ASQ
Ah = Ahy + Ahy = =
v Ahe = Z (5= 4 57),
or
Q _ (Ahl —+ Ahz)A
o Asl/kl + ASQ/kZ.
Using the given data it now follows that Q = 0.0628 cm®/s.
Example 7.3
l l l l l A similar circular glass tube is filled over one half of its area with 40 cm of sand, having a hydraulic con-
ductivity of 107° m/s, and over the other half of its area with 40 cm sand having a hydraulic conductivity

that is a factor 4 larger, see Figure 7.5. The inner diameter of the circular tube is 10 cm. Calculate the
discharge @) through this layered sample, if the head difference between the top and bottom of the sample is
20 cm.

Solution

) l l l i l ) In this case the water must flow through the two media in parallel. The discharge through the system now is the sum
Figure 7.5: Two-layered soil. of the discharges through the two media, Q = Q1 + Q2, with

Ql = %k1A1Ah/AS, QQ = %kQAQAh/AS,

It is given that A; = Ay = %A = 39.27 cm?, and for both parts Ah/As = 20/40 = 0.5.
It then follows that @ = 0.0982 cm?®/s.

Problem 7.1 In Figure 7.1 the fluid flows through the soil in vertical direction. In principle the tube can also be placed horizontally. The formulas then
remain the same, and the measurement of the head difference is simpler. The test is usually not done in this way, however. Why not?

Problem 7.2 An engineer must give a quick estimate of the permeability of a certain sand. He remembers that the hydraulic conductivity of the sand
in a previous project was 8 m/d. The sand in the current project seems to have particles that are about i times as large. What is his estimate?



Chapter 8

GROUNDWATER FLOW

In the previous chapters the relation of the flow of groundwater and the fluid pressure, or the groundwater head, has been discussed, in the form
of Darcy’s law. In principle the flow can be determined if the distribution of the pressure or the head is known. In order to predict or calculate
this pressure distribution Darcy’s law in itself is insufficient. A second principle is needed, which is provided by the principle of conservation
of mass. This principle will be discussed in this chapter. Only the simplest cases will be considered, assuming isotropic properties of the soil,
and complete saturation with a single homogeneous fluid (fresh water). It is also assumed that the flow is steady, which means that the flow is
independent of time.

8.1 Flow in a vertical plane

Suppose that the flow is restricted to a vertical plane, with a cartesian coordinate system of axes & and z. The z-axis is supposed to be in
upward vertical direction, or, in other words, gravity is supposed to act in negative z-direction. The two relevant components of Darcy’s law
now are

Oh

Gz = 7k%a
(8.1)

. 0h

qz = — a

Conservation of mass now requires that no water can be lost or gained from a small element, having dimensions dx and dz in the x, z-plane, see
Figure 8.1. In the z-direction water flows through a vertical area of magnitude dy dz, where dy is the thickness of the element perpendicular to
the plane of flow. The difference between the outflow from the element on the right end side and the inflow into the element on the left end side
is the discharge

% dx dydz.

Ox
In the z-direction water flows through a horizontal area of magnitude dx dy. The difference of the outflow through the upper surface and the
inflow through the lower surface is 5

qz

0z

drdydz.
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2 The sum of these two quantities must be zero, and this gives, after division by dz dy dz,

e+ gz e 9¢; | 9g:
Ox 0z
9. The validity of this equation, the continuity equation, requires that the density of the fluid
q; 9ot 5y dx is constant, so that conservation of mass means conservation of volume. Equation (8.2)
expresses that the situation shown in Figure 8.1, in which both the flow in z-direction
and the flow in z-direction increase in the direction of flow, is impossible. If the flow in
4= z-direction increases, the element looses water, and this must be balanced by a decrease
of the flow in z-direction.
Substitution of (8.1) into (8.2) leads to the differential equation

=0. (8.2)

Figure 8.1: Continuity.
2 2
Oh L oh (8.3)
0x? = 022
where it has been assumed that the hydraulic conductivity k is a constant. Eq. (8.3) is often denoted as the Laplace equation. This differential
equation governs, together with the boundary conditions, the flow of groundwater in a plane, if the porous medium is isotropic and homogeneous,
and if the fluid density is constant. It has also been assumed that no water can be stored. The absence of storage is valid only if the soil does
not deform and is completely saturated.

The mathematical problem is to solve equation (8.3), together with the boundary conditions. For a thorough discussion of such problems
many specialized books are available, both from a physical point of view (on groundwater flow) and from a mathematical point of view (on
potential theory). Here only some particular solutions will be considered, and an approximate method using a flow net.

It may be mentioned that in groundwater hydrology the groundwater head is often denoted by ¢ rather than h. However, in soil mechanics
this notation would be inconvenient as the symbol ¢ is reserved for the angle of internal friction of the soil, see later chapters.

8.2 Upward flow

A very simple special case of groundwater flow occurs when the water flows in vertical direction only. The solution for this case is h = iz, where
i is a constant, a measure for the intensity of the flow. Actually ¢, that is dh/dz, is called the gradient. In this case ¢, = 0 and g, = —k+i. The

equation of continuity (8.2) is now indeed satisfied. If the specific discharge is now denoted as qq, the gradient appears to be i = —qo/k, and
h = —qoz/k. Because in general h = z + p/7,, it now follows that the pressure in the groundwater is
p=—Yuwz(l —1) = —ywz(1 + qo/k). (8.4)

The first term is the hydrostatic pressure, and the second term is due to the vertical flow. It appears that a vertical flow requires a pressure
that increases with depth stronger than in the hydrostatic case.
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Figure 8.2 shows an example of a clay layer on a sand layer, with the groundwater level at the top of the clay layer coinciding with the soil

surface, whereas in the deep sand the groundwater head is somewhat higher, as indicated in the figure by the water level in a standpipe, reaching

into this sand layer. A case like this may occur in a

polder, in case of a top layer of very low permeability,

underlain by a very permeable layer in which the ground-

water level is determined by the higher water levels in

the canals surrounding the polder. It is assumed that

0, P the permeability of the sand is so large, compared to the

permeability of the clay, that the water pressures in the

sand layer are hydrostatic, even though there is a certain,

small, velocity in the water. The upward flow through

the clay layer is denoted as seepage. The drainage system

of the polder must be designed so that the water entering

the polder from above by rainfall, and the water enter-

ing the polder from below by seepage, can be drained

away. The distribution of the pore water pressures in the

sand layer can be sketched from the given water level,

z and the assumption that this distribution is practically

hydrostatic. This leads to a certain value at the bottom

of the clay layer. In this clay layer the pore pressures will

be linear, between this value and the value p = 0 at the top, assuming that the permeability of the clay layer is constant. Only then the flow
rate through the clay layer is constant, and this is required by the continuity condition.

Figure 8.2: Upward flow, Example 1.

In Figure 8.2 the total stresses (o) have also been indicated, assuming that in the sand and the clay the volumetric weight is the same, and
about twice as large as the volumetric weight of water. These total stresses are linear with depth, and at the surface the total stress is zero,
o = 0. The effective stresses are the difference of the total stresses and the pore water pressures (¢’ = o — p). They are indicated in the figure
by horizontal hatching. It can be seen that the effective stresses in the clay are reduced by the upward flow, compared to the fully hydrostatic
case, if the groundwater level in the sand were equal to the level of the soil surface. The upward flow appears to result in lower effective stresses.

It may be that the groundwater head in the deep sand is so high that the effective stresses in the clay layer reach the value ¢/ = 0. This is
the smallest possible value, because tensile stresses can not be transmitted by the clay particles. The situation that the effective stresses become
zero is a critical condition. In that case the effective stresses in the clay are zero, and no forces are transmitted between the particles. If the
pressure in the water below the clay layer would become slightly larger, the clay layer will be lifted, and cracks will appear in it. If ¢/ = 0 the
soil has no strength left. Even a small animal would sink into the soil. This situation is often indicated as liquefaction, because the soil (in this
example the clay layer) has all the characteristics of a liquid : the pressure in it is linear with depth (although the apparent volumetric weight
is about twice the volumetric weight of water), and shear stresses in it are impossible. The value of the gradient dh/dz for which this situation
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occurs is sometimes denoted as the critical gradient. In the case considered here the total stresses are
Ozz = —Vs?, (85)

where 7, is the volumetric weight of the saturated soil (about 20 kN/m?). In the case of a critical gradient the pore pressures, see (8.4), must
be equal to the total stresses. This will be the case if ¢ = i.,, with

. Vs — Yw
log = —————. 8.6
c ~ (8.6)

As the z-axis points in upward direction, this negative gradient indicates that the groundwater head increases in downward direction, which
causes the upward flow. The order of magnitude of the absolute value of the critical gradient is about |ic;| = 1, assuming that vs = 27,,.

In the critical condition the vertical velocity is so large that the upward friction of the water on the soil particles just balances the weight of
the particles under water, so that they no longer are resting on each other. Such a situation, in which there is no more coherence in the particle
skeleton, should be avoided by a responsible civil engineer. In engineering practice a sufficiently large margin of safety should be included. If
the top layer is not homogeneous it is possible that an average gradient of 1 can easily lead to instabilities, because locally the thickness of the
clay layer is somewhat smaller, for instance. Water has a very good capacity to find the weakest spot.

In several cases this phenomenon has lead to large calamities and large costs, such as excavations of which the bottom layer has burst
open, with flooding of the entire excavation as a result. Preventing such calamities may be costly, but is always much cheaper than the repair

works that are necessary in case of collapse. An easy method to prevent bursting of a clay layer is to

lower the groundwater head below it, by a pumping well. As an example Figure 8.3 shows an excavation

r r for a building pit. If the groundwater level in the upper sand layer is lowered by a drainage system in

o the excavation, the shape of the phreatic level may be of the form sketched in the figure by the fully

drawn curves. Water in the upper layer will flow into the excavation, and may be drained away by

pumping at the bottom of the excavation. If the permeability of the clay layer is sufficiently small,

the groundwater level in the lower layer will hardly be affected by this drainage system, and very little

water will flow through the clay layer. The phreatic level in the lower sand layer is indicated in the

Figure 8.3: Draining an excavation. figure by the dotted line. The situation drawn in the figure is very dangerous. Only a thin clay layer

separates the deep sand from the excavation. The water pressures in the lower layer are far too high

to be in equilibrium with the weight of the clay layer. This layer will certainly collapse, and the excavation will be flooded. To prevent this,

the groundwater level in the lower layer may be lowered artificially, by pumping wells. These have also been indicated in the figure, but their

influence has not yet been indicated. A disadvantage of this solution is that large amounts of water must be pumped to lower the groundwater

level in the lower layer sufficiently, and this entails that over a large region the groundwater is affected. Another solution may be to construct a
layer of concrete at the bottom of the excavation, before lowering the groundwater table.
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It may be interesting to note that the critical gradient can also be determined using the concept of seepage force, as introduced in the previous
chapter. In this approach all the forces acting upon the particle skeleton are considered, and equilibrium of this skeleton is formulated. The
force due to the weight of the material is a downward force caused by the volumetric weight under water, s — 7y,,. This leads to effective stresses

of the form
/

Orz = _(78 - ryw)z (87)
The particles have an apparent volumetric weight of 75 — v,,. The absolute value of the seepage force is, with (6.16), j = ~,,¢. The two forces
can be balanced if the two values are equal, but opposite, i.e. if i = i.,, with
. "Ys - 7w
[ cr | R (8.8)

This is in agreement with the value derived before, see (8.6).

Geotechnical engineers usually prefer the first approach, in

which the effective stresses are derived as the difference of

the total stresses and the pore pressures, and then the criti-
\ cal situation is generated if anywhere in the field the effective
| stress becomes zero. This is a much more generally applicable
\ criterion than a criterion involving a critical gradient. As an
N illustration a somewhat more complex situation is shown in
_ _ o \ o Figure 8.4, with two sand layers, above and below a clay layer.
\ It has been assumed that in both sand layers the groundwa-
N ter pressures are hydrostatic, with a higher zero level in the
\ lower layer. Water will flow through the clay layer, in upward
direction.

The situation shown in Figure 8.4 is not yet critical, even
though the upward gradient in the clay layer is i = 4., as
can be seen by noting that the effective stresses in the clay
layer do not increase with depth. Indeed, the upward seepage
force in the clay layer is in equilibrium with the downward
force due to the weight of the soil under water. However, at
the top of the clay layer there is a non-zero effective stress
at the top of the clay layer, due to the weight of the sand
above it. Because of this surcharge the effective stresses are
unequal to zero throughout the clay layer, and the situation
Figure 8.4: Upward flow, Example 2. is completely safe. The groundwater pressure below the clay

z
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layer could be considerably higher before the risk of loss of equilibrium by the effective stress becoming zero is reached, at the bottom of the
clay layer. The concept of critical gradient appears to be irrelevant in this case, and its use should be discouraged.

It can be concluded that an upward groundwater flow may lead to loss of equilibrium, and this will occur as soon as the effective stress
reaches zero, anywhere in the soil. Such a situation should be avoided by all means, whatever the costs.

8.3 Flow under a wall

A solution of the basic equations of groundwater flow, not so trivial as the
z previous one, in which the flow rate was constant, is the solution of the
@ o problem of flow in a very deep deposit, bounded by the horizontal surface
z = 0, with a separation of two regions above that surface by a thin vertical
wall at the location x = 0, see Figure 8.5. The water level at the right side
of the wall is supposed to be at a height H above ground surface, and the
water level at the left side of the wall is supposed to coincide with the ground
surface. Under the influence of this water level difference groundwater will
flow under the wall, from right to left. The solution of this problem can be
obtained using the theory of functions of a complex variable. The actual solution procedure is not considered here. It is assumed, without any
derivation, that in this case the solution of the problem is

Figure 8.5: Flow under a wall.

h= g arctan(z/z). (8.9)

In order to apply this solution, it should be verified first that it is indeed

the correct solution. For this purpose it is sufficient to check that the solu- arctan(u)
tion satisfies the differential equation, and that it is in agreement with the
boundary conditions.

That the solution (8.9) satisfies the differential equation (8.3) can easily
be verified by substituting the solution into the differential equation. To
verify the boundary conditions the behavior of the solution for z T 0 must be
investigated. The value of z/x then will approach 0 from below if > 0, and 5 5 5 5 5 5 5 5
it will approach 0 from above if x < 0. Let it now be assumed that the range _5 ") 7’3 5 1 0 1 2 3 4 5
of the function arctan(u) is from 0 to m/2 if the argument u goes from 0 to
oo, and from 7/2 to m if the argument u goes from —oo tot 0, see Figure 8.6.
In that case it indeed follows that h = H if > 0 and z 1 0, and that h = 0 if z < 0 and z 7 0. All this means that equation (8.9) is indeed the
correct solution of the problem, as it satisfies all necessary conditions.

Figure 8.6: Function arctan(u).
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The vertical component of the specific discharge can be obtained by differentiation of the solution (8.9) with respect to z. This gives

kH =
= —— . 8.10
q P g (8.10)
In particular, it follows that along the horizontal axis, where z = 0,
kH
z2=0: q=——. (8.11)
T

If > 0 this is negative, so that the water flows in downward direction. This means that to the right of the wall the water flows in vertical
direction into the soil, as was to be expected. If x < 0, that means to the left of the wall, the specific discharge ¢, is positive, i.e. the water
flows in upward direction, as also was to be expected. Very close to the wall, i.e. for small values of z, the velocity will be very large. Locally
that might result in erosion of the soil.

It also follows from the solution, because arctan(co) = /2, that on the vertical axis, i.e. for x = 0, the groundwater head is h = H/2. That
could have been expected, noting the symmetry of the problem.

The total discharge from the reservoir at the right side of the wall, between the two points x = a and = b (with b > a) can be found by
integration of eq. (8.11) from z = a to = b. The result is

kHB

™

Q= In(b/a), (8.12)

in which B is the thickness of the plane of flow, perpendicular to the figure. This formula indicates that the total discharge is infinitely large if
b — oo or if a — 0. In reality such situations do not occur, fortunately.

% Equation (8.12) can be used to obtain a first estimate for the discharge under a hydraulic

- - _ structure, such as a sluice, see Figure 8.7. If the length of the sluice is denoted by 2a,

— and the thickness of the layer is d, it can be assumed that the water to the left and to the
right of the sluice will mostly flow into the soil and out of it over a distance approximately

between z = a and x = b = a + d. In Figure 8.7 it seems that the values of a and d are
approximately equal, so that In(b/a) = 0.693. This gives @ = 0.22 kH B a a first estimate
Figure 8.7: Flow under a sluice. for the total discharge.

] equal to d. The flow then is somewhat similar to the flow in the problem of Figure 8.5
d

Example 8.1

The thickness of a clay layer is 8 m, and its volumetric weight is 18 kN/mS. It is covered by a layer of very permeable sand, having a thickness of 4 m, a
saturated volumetric weight of 20 kN/m?, and a dry volumetric weight of 16 kN/m®. The phreatic surface coincides with the soil surface. However, in the
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thick sand layer directly below the clay layer the groundwater head is at a level of 4 m above the soil surface. Calculate the effective stress in the center of
the clay layer.

Solution

The total stress at a depth of 8 m below the surface is 0., = 20 x 4 + 18 x 4 = 152 kPa. At the top of the clay layer the groundwater head is h = 0,
and at the bottom of the clay layer the groundwater head is h = 4 m. This means that there is a uniform upward flow through the clay layer, so that the
groundwater head at the center of the clay layer is h = 2 m. Because the depth below the surface at that level is 8 m, the pore pressure at that level is
p = 100 kPa. The effective stress then is 0., = 0., — p = 52 kPa.

Example 8.2

Calculate the effective stress in the center of the clay layer if the groundwater level in the upper sand layer is lowered to 2 m below the soil surface.
Solution

If the groundwater table in the upper sand layer is lowered by 2 m, this layer now consists of 2 m dry soil and 2 m saturated soil. The toal stress at a depth
of 8 m below the surface now is 0., = 16 x 2420 x 24 18 x 4 = 144 kPa. The groundwater head at the top of the clay layer now is h = —2 kPa, and at the
bottom of the clay layer the groundwater head again is h = 4 h. This means that at the center of the clay layer the groundwater head is h = 1 kPa. The
pore pressure at that level now is 90 kPa. The effective stress then is 0., = 0., — p = 54 kPa.

Example 8.3

Next calculate the effective stress in the center of the clay layer if a layer of concrete is constructed on the soil surface, leading to a load of 40 kPa.

Solution

The only difference with the previous situation is the additional 40 kPa, which increases the total stress below it. At the center of the clay layer the total
stress now is 184 kPa. Because the pore pressure remains at the value p = 90 kPa. The effective stress then is o, = 0., — p = 94 kPa.

Problem 8.1 A clay layer has a thickness of 3 m, and a volumetric weight of 18 kN/m?*. Above the clay layer the soil consists of a sand layer, of thickness
3 m, a saturated volumetric weight of 20 kN/m?, and a dry volumetric weight of 16 kN/m®. The groundwater level in the sand is at 1 m below the soil
surface. Below the clay layer, in another sand layer, the groundwater head is variable, due to a connection with a tidal river. What is the maximum head
(above the soil surface) that may occur before the clay layer will fail?



Chapter 9

FLOATATION

In the previous chapter it has been seen that under certain conditions the effective stresses in the soil may be reduced to zero, so that the soil
looses its coherence, and a structure may fail. Even a small additional load, if it has to be supported by shear stresses, can lead to a calamity.
Many examples of failures of this type can be given : the bursting of the bottom of excavation pits, and the floatation of basements, tunnels
and pipelines. The floatation of structures is discussed in this chapter.

9.1 Archimedes

The basic principle of the uplift force on a body submerged in a fluid is due to Archimedes. This principle can best be explained by
considering a small rectangular element, at rest in a fluid, see Fig-
ure 9.1. The material of the block is irrelevant, but it must be given
to be at rest. The pressure in the fluid is a function of depth only,
and in a homogeneous fluid the pressure distribution is

p = pgz, (9.1)

where p is the density of the fluid, g the acceleration of gravity, and
z the depth below the fluid surface.

The pressures on the left hand side and the right hand side are
equal, but act in opposite direction, and therefore are in equilibrium.
The pressure below the element is greater than the pressure above it.
The resultant force is equal to the difference in pressure, multiplied
by the area of the upper and lower surfaces. Because the pressure
difference is just pgh, where h is the height of the element, the upward force equals pg times the volume of the element. That is just the
volumetric weight of the water multiplied by the volume of the element. Because any body can be constructed from a number of such elementary
blocks, the general applicability of Archimedes’ principle (a submerged body experiences an upward force equal to the weight of the displaced
fluid) follows.

A different argument, that immediately applies to a body of arbitrary shape, is that in a state of equilibrium the precise composition of
a body is irrelevant for the force acting upon it. This means that the force on a body of water must be the same as the force on a body of

Figure 9.1: Archimedes’ principle.

61
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some other substance, that then perhaps must be kept in equilibrium by some additional force. Because the body when composed of water is
in equilibrium it follows that the upward force must be equal to the weight of the water in the volume. On a body of some other substance the
resultant force of the water pressures must be the same, i.e. an upward force equal to the weight of the water in the volume. This is the proof
that is given in most textbooks on elementary physics. The upward force is often denoted as the buoyant force, and the effect is denoted as
buoyancy.

The buoyancy force on a body in a fluid may have as a result that the body floats on the water, if the weight of the body is smaller than
the upward force. Floatation will happen if the body on the average is lighter than water. More generally, floatation may occur if the buoyancy
force is larger than the sum of all downward forces together. This may happen in the case of basements, tunnels, or pipelines. In principle
floatation can easily be prevented: the body must be heavy enough, and may have to be ballasted.

The problem of possible floatation of a foundation is that care must be taken that the effective stresses are always positive, taking into
account a certain margin of safety. In practice this may be more difficult than imagined, because perhaps not all conditions have been foreseen.
Some examples may illustrate the analysis.

9.2 A concrete floor under water

As a first example a concrete floor of an excavation is considered. Such structures are often used as foundations of basements, or as the pavement
of the access road of a tunnel. One of the functions of the concrete plate is to give additional weight to the soil, so that it will not float. Care
must be taken that the water table can only be lowered when the concrete plate is already present. Therefore a convenient procedure is to
build the concrete plate under water, before the lowering of the water table, see Figure 9.2. After excavation of the pit, under water, perhaps

Figure 9.2: Excavation with concrete floor under water.

using dredging equipment, the concrete floor must be constructed, taking great care of the continuity of the floor and the vertical walls of the
excavation. When the concrete structure has been finished, the water level can be lowered. In this stage the weight of the concrete is needed to
prevent floatation.

There are two possible methods to perform the stability analysis. The best method is to determine the effective stresses just below the
concrete floor. If these are always positive, in every stage of the building process, a compressive stress is being transferred in all stages, and the
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structure is safe. Whenever tensile stresses are obtained, even in a situation that is only temporary, the design must be modified. The structure
will not always be in equilibrium, and will float or break. It is assumed that in the case shown in Figure 9.2 the groundwater level is at a depth
d =1 m below the soil surface, and that the depth of the top of the concrete floor should be located at a depth h = 5 m below the soil surface.
Furthermore the thickness of the concrete layer (which is to be determined) is denoted as D. The total stress just below the concrete floor now
is

o=n.D, (9.2)
where 7. is the volumetric weight of the concrete, say 7. = 25 kN/m3. The pore pressure just below the concrete floor is
p=(h—d+ D)y, (9.3)
so that the effective stress is
0, =0..—p=7D—vu(h—d+ D)= (Ve — Yw)D — yw(h — d). (9.4)
The requirement that this must be positive gives
fy’w
D>(h—-d——. (9.5)
Ve = Tw

The effective stress will be positive if the thickness of the concrete floor is larger than the critical value. In the example, with h —d =4 m and
the concrete being a factor 2.5 heavier than water, it follows that the thickness of the floor must be at least 2.67 m.

It may be noted that the required thickness of the concrete floor should be somewhat larger, namely 3.33 m, if the groundwater level could
also coincide with the soil surface. One must be very certain that this condition cannot occur if the concrete plate is taken thinner as 3.33 m. It
may also be noted that in time of danger, perhaps when the groundwater pressures rises because of some emergency, the foundation can often
be saved by submerging it with water.

The analysis can be done somewhat faster by directly requiring that the weight of the concrete must be sufficient to balance the upward force
acting upon it from below. This leads to the same result. The analysis using the somewhat elaborate process of calculating the effective stresses
may take some more time, but it can more easily be generalized, for instance in case of a groundwater flow, when the groundwater pressures are
not hydrostatic.

The concrete floor in a structure as shown in Figure 9.2 may have to be rather thick, which requires a deep excavation and large amounts
of concrete. In engineering practice more advanced solutions have been developed, such as a thin concrete floor, combined with tension piles.
It should be noted that this requires a careful (and safe) determination of the tensile capacity of the piles. A heavy concrete floor may be
expensive, its weight is always acting.

9.3 Floatation of a pipe

The second example is concerned with a pipeline in the bottom of the sea (or a circular tunnel under a river), see Figure 9.3. The pipeline is
supposed to consist of steel, with a concrete lining, having a diameter 2R and a total weight (above water) G, in kN/m. This weight consists of
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the weight of the steel and the concrete lining, per unit length of the pipe. For the
risk of floatation the most dangerous situation will be when the pipe is empty.
For the analysis of the stability of the pipeline it is convenient to express its
weight as an average volumetric weight +,, defined as the total weight of the pipeline
divided by its volume. In the most critical case of an empty pipeline this is

= G/TR?. (9.6)

The buoyant force F' on the pipeline is, in accordance with Archimedes’principle,

Figure 9.3: A pipe in the ground. F = v,7R?, (9.7

where 7, is the volumetric weight of water. If the upward force F' is smaller than the weight G there will be no risk of floatation. The pipeline
then sinks in open water. This will be the case if v, > 7,,. For a pipeline on the bottom of the sea this is a very practical criterion. If one would
have to rely on the weight of the soil above the pipeline for its stability, floatation might occur if the soil above the pipeline is taken away by
erosion, which is not unlikely. The pipeline then might float to the sea surface, and that should be avoided.

In case of a tunnel buried under a river there seems to be more certainty that the soil above the tunnel remains in place. Then the weight of
the soil above the tunnel may prevent floatation even if the tunnel is lighter than water (v, < v, ). The weight W of the soil above the tunnel is

W = ~4[2Rd + (2 — n/2)R?, (9.8)

where -, is the volumetric weight of the soil, and d is the cover thickness, the thickness of the soil at the top of the tunnel. It is now essential
to realize, in accordance with Archimedes’ principle that for the stability of the tunnel the soil above it only contributes insofar as it is heavier
than water. The water above the tunnel does not contribute. A block of wood will float in water, even if the water is very deep. This means
that the effective downward force of the soil above the tunnel is

W' = (vs = w)[2Rd + (2 — 7/2) R?], (9.9)

the difference of the weight of the soil and the weight of the water in the same volume. The amount of soil that is minimally needed now follows
from the condition
W' +G—F>0. (9.10)
This gives
(Y = Yu)2Rd + (2 — m/2)R?] > (Yo — Yp) 7R, (9.11)
from which the ground cover d can be calculated. There still is some additional safety, because when the tunnel moves upward the soil above it

must shear along the soil next to it, and the friction force along that plane has been disregarded. It is recommended to keep that as a hidden
reserve, because floatation is such a serious calamity.
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The analysis can, of course, also be performed in the more standard way of soil mechanics stress analysis: determine the effective stress as
the difference of the total stress and the pore pressure. The procedure is as follows.
The average total stress below the tunnel is (averaged over its width 2R)

0 =Yph+W/2R + G/2R = vyh + vs[d + (1 — 7/4)R] + v,7R/2, (9.12)

where h is the depth of the water in the river. The average pore pressure below the tunnel is determined by the volume of the space occupied
by the tunnel and everything above it, up to the water surface,

P = Ywh + Ywl[d + (1 — 7/4)R] + 7w R/2. (9.13)
The average effective stress below the tunnel now is
o' = (s — ’Yw)[d +(1— 7T/4)R] + (PYI) = Yu)TR/2. (9.14)

The condition that this must be positive, because the particles can not transmit any tensile force, leads again to the criterion (9.11).

Example 9.1

A block of wood, having a volume of 0.1 m® is kept in equilibrium below water in a basin of wa-
ter by a cord attached to the bottom of the basin, see Figure 9.4. The volumetric weight of the
wood is 9.0 kN/m?® and the volumetric weight of the water is 10.0 kN/m?®.  Calculate the force in the
cord.

Solution

The weight of the block leads to a downward force of 0.9 kN. The upward force due to buoyancy is the weight of the
displaced fluid: 1.0 kN. The difference must be the force in the cord, i.e. 0.1 kN. Figure 9.4: Block in water.
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Example 9.2
The basin next is filled with two fluids: salt water (volumetric weight 10.2 kN/m?*) and fresh water above it. The
separation level of the salt and the fresh water coincides with the top of the block of wood, see Figure 9.5. Again

calculate the force in the cord.

Solution

The weight of the block remains 0.9 kN. The upward force now is determined by the heavier fluid, which completely
surrounds the block. The resulting upward force now is 1.02 kN. The difference is the force in the cord, i.e. 0.12 kN.

Figure 9.5: Block in two fluids.
Example 9.3

A tunnel of square cross section, 8 m X 8 m, has a weight (above water) of 50 ton per meter length. The tunnel is
being floated to its destination, with its two ends closed by temporary sheets. Calculate the draught (the depth of

the bottom below water).

Solution

The weight of the tunnel per meter length is 500 kN. If the depth of the floating tunnel below water is denoted by d, Figure 9.6: Floating tunnel.
the upward force per unit meter is d x 8 m x 10 kN/m?. These two forces cancel if d = 6.25 m.

Example 9.4
The tunnel of the previous problem is sunk into a trench that has been dredged in the river bottom, and then covered

with sand. The volumetric weight of the sand is 20 kN/m3. Determine the minimum cover of sand necessary to
prevent floatation of the tunnel.

Solution

As seen before the weight of the tunnel per meter length is 500 kN. If the depth of the sand above the tunnel is
denoted by h, the total force at the bottom of the tunnel (expressed in kN/m) is F' = 500 + 8 % 20 x h = 500 + 160 * h.
The upward force due to the water below the tunnel is P = (h + 8) * 10 x 8 = 640 + 80 x h. In order that the effective Figure 9.7: Tunnel at rest.
stress below the tunnel remains positive the condition is F' > P. The critical situation is when F' = P, which will be
the case for h = 1.75 m. This is the minimum value of the sand cover to prevent floatation. Of course in reality a larger value should be taken.

It may be noted that the depth of the water above the sand has been disregarded here, but this would add an equal value to both F' and P, and thus
would have no effect on the outcome.



Chapter 10

FLOW NET

10.1 Potential and stream function

Two dimensional groundwater flow through a homogeneous soil can often be described approximately in a relatively simple way by a flow net,
that is a net of potential lines and stream lines. The principles will be discussed briefly in this chapter.
The groundwater potential, or just simply the potential, ® is defined as

o = kh, (10.1)

where k is the permeability coefficient (or hydraulic conductivity), and h is the groundwater head. It is assumed that the hydraulic conductivity
k is a constant throughout the field. If this is not the case the concept of a potential can not be used. Darcy’s law, see (8.1), can now be written
as

0%
Gz = _%a
(10.2)
0%
qz = _57
or, using vector notation,
q=-Vo. (10.3)

In mathematical physics any quantity whose gradient is a vector field (for example forces or velocities), is often denoted as a potential. For
that reason in groundwater theory ® is also called the potential. In some publications the groundwater head h itself is sometimes called the
potential, but strictly speaking that is not correct, even though the difference is merely the constant k.
The equations (10.2) indicate that no groundwater flow will flow in a direction in which the potential ® is not changing. This means that in
a figure with lines of constant potential (these are denoted as potential lines) the flow is everywhere perpendicular to these potential lines, see
Figure 10.1.
The flow can also be described in terms of a stream function. This can best be introduced by noting that the flow must always satisfy the
equation of continuity, see (8.2), i.e.
02 | 04
ox 0z

= 0. (10.4)
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This means that a function ¥ must exist such that

v

4z = —ga
(10.5)

LoV

q. = +%

By the definition of the components of the specific discharge in this way,
as being derived from this function ¥, the stream function, the continuity
equation (10.4) is automatically satisfied, as can be verified by substitution
of egs. (10.5) into (10.4).

It follows from (10.5) that the flow is precisely in z-direction if the value
of ¥ is constant in z-direction. This can be checked by noting that the
condition ¢, = 0 can only be satisfied if 0¥ /0x = 0. Similarly, the flow
is in z-direction only if ¥ is constant in z-direction, because it follows that
¢z = 0if 0¥ /9z = 0. This suggests that in general the stream function ¥ is
constant in the direction of flow. Along the stream lines in Figure 10.1 the
value of ¥ is constant. Formally this property can be proved on the basis of the total differential

D3

Figure 10.1: Potential lines and Stream lines.

ov ov
dv = %daz + gdz = ¢ dz — qzdz. (10.6)

This will be zero if dz/dx = q./q,, and that means that the direction in which d¥ = 0 is given by dz/dz = q./q.., which is precisely the direction
of flow. It can be concluded that in a mesh of potential lines and stream lines the value of ¥ is constant along the stream lines.

If the z-direction coincides with the direction of flow, the value of ¢, is 0. It then follows from (10.2) and (10.5) that in that case & is
constant in z-direction, and that ¥ is constant in z-direction. Furthermore, in that case one may write, approximately

ae_Av (10.7)
Ax Az
It now follows that if the intervals A® and AWV are chosen to be equal, then Az = Az, i.e. the potential line and the stream line locally form a
small square. That is a general property of the system of potential lines and streamlines (the flow net): potential lines and stream lines form a
system of ”squares”.

The physical meaning of A® can be derived immediately from its definition, see equation 10.2. If the difference in head between two potential
lines, along a stream line, is Ah, then A® = kAh. The physical meaning of AU can best be understood by considering a point in which the
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flow is in z-direction only. In such a point ¢ = ¢, = —A¥/Az, or AU = —g Az. In general one may write
AV = —q An, (10.8)

where n denotes the direction perpendicular to the flow direction, with the relative orientation of n and s being the same as for z and z. If the
thickness of the plane of flow is denoted by B, the area of the cross section between two stream lines is AnB. It now follows that

AV = —AQ/B. (10.9)

The quantity AW appears to be equal to the discharge per unit thickness being transported between two stream lines. It will appear that this
will enable to determine the total discharge through a system.

10.2 Flow under a structure

As an example the flow under a structure will be considered, see Figurel0.2. In this case a sluice has been constructed into the soil. It is assumed
that the water level on the left side of the sluice is a distance H higher than the water on the right side. At a certain depth the permeable
soil rests on an impermeable layer. To restrict the flow under the sluice a sheet pile wall has been installed on the upstream side of the sluice
bottom.

The flow net for a case like this can be determined iteratively. The best procedure is by sketching a small number of stream lines, say 2 or
3, following an imaginary water particle from the upstream boundary to the downstream boundary. These stream lines of course must follow
the direction of the constraining boundaries at the top and the bottom of the flow field. The knowledge that the stream lines must everywhere

Figure 10.2: Flow net.

be perpendicular to the potential lines can be used by drawing the stream lines perpendicular to the horizontal potential lines to the left and
to the right of the sluice. After sketching a tentative set of stream lines, the potential lines can be sketched, taking care that they must be
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perpendicular to the stream lines. In this stage the distance between the potential lines should be tried to be taken equal to the distance between
the stream lines. In the first trial this will not be successful, at least not everywhere, which means that the original set of stream lines must be
modified. This then must be done, perhaps using a new sheet of transparent paper superimposed onto the first sketch. A better set of stream
lines can then be sketched such that a better approximation of a net of squares is obtained.

The entire process must be repeated a few times, until finally a satisfactory system of squares is obtained, see Figure 10.2. Near the corners
in the boundaries some special ”squares” may be obtained, sometimes having 5 sides. This must be accepted, because the boundary imposes
the bend in the boundary. In the case of Figure 10.2 at the right end of the net one half of a square is left. It turns out that there are 12.5
intervals between potential lines, which means that the interval between two potential lines is

kH
AD = 25 (10.10)
Because the flow net consists of squares it follows that AV = A®, so that
kH
AV = 28 (10.11)
Because there appear to be 4 stream bands, the total discharge now is
Q= 4 kHB = 0.32kHB, (10.12)

12.5

in which B is the width perpendicular to the plane of the figure. The value of the discharge ) must be independent of the number of stream
lines that has been chosen, of course. This is indeed the case, as can be verified by repeating the process with 4 interior stream lines rather than
3. It will then be found that the number of potential intervals will be larger, about in the ratio 5 to 4. The ratio of the number of squares in
the direction of flow to the number of squares in the direction perpendicular to the flow remains (approximately) constant.

From the completed flow net the groundwater head in every point of the field can be determined. For instance, it can be observed that
between the point at the extreme left below the bottom of the sluice and the exit point at the right, about 6 squares can be counted (5 squares
and two halves). This means that the groundwater head in that point is

6
h=-—H=0.48H, 10.13
12.5 ( )
if the head is measured with respect to the water level on the right side.
The pore water pressure can be derived if the head is known, as well as the elevation, because h = z + p/~,,. The evaluation of the water
pressure may be of importance for the structural engineer designing the concrete floor, and for the geotechnical engineer who wishes to know
the effective stresses, so that the deformations of the soil can be calculated.
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From the flow net the force on the particles can also be determined (the seepage force). According to equation (6.16) the seepage force is

o
Jxz = _’Yw%a
(10.14)
. on
Jz = _'Vw&-

In the case illustrated in Figure 10.2 it can be observed that at the right hand exit, next to the structure, in the last (half) square Ah =
—H/(2 x 12.5) and Az = 0.3d, if d is the depth of the structure into the ground. Then, approximately, Oh/0z = —0.133 H/d, so that
j» = 0.133y,, H/d. This is a positive quantity, indicating that the force acts in upward direction, as might be expected. The particles at the
soil surface are also acted upon by gravity, which leads to a volume force of magnitude —(vs — 74, ), negative because it is acting in downward
direction. It seems tempting to conclude that there is no danger of erosion of the soil particles if the upward force is smaller than the downward
force. This would mean, assuming that vs/v, = 2, so that (ys — Yw)/7w = 1, that the critical value of H/d would be about 7.5. Only if the
value of H/d would be larger than 7.5 erosion of the soil would occur, with the possible loss of stability of the floor foundation at the right hand
side.

In reality the danger may be much greater. If the soil is not completely homogeneous, the gradient 9h/0z at the downstream exit may be
much larger than the value calculated here. This will be the case if the soil at the downstream side is less permeable than the average. In that
case a pressure may build up below the impermeable layer, and the situation may be much more dangerous. On the basis of continuity one might
say, very roughly, that the local gradient will vary inversely proportional to the value of the hydraulic conductivity, because k13, = kois. This
means that locally the gradient may be much larger than the average value that will be calculated on the basis of a homogeneous average value
of the permeability. Locally soil may be eroded, which will then attract more water, and this may lead to further erosion. The phenomenon is
called piping, because a pipe may be formed, just below the structure. Piping is especially dangerous if a structure is built directly on the soil
surface. If the structure of Figure 10.2 were built on the soil surface, and not into it, the velocities at the downstream side would be even larger
(the squares would be very small), with a greater risk of piping.

Prescribing a safe value for the gradient is not so simple. For that reason large safety factors are often used. In the case of vertical outflow,
as in Figure 10.2, a safety factor 2, or even larger, is recommended. In cases with horizontal outflow the safety factor must be taken much larger,
because in that case there is no gravity to oppose erosion. In many cases piping has been observed, even though the maximum gradient was
only about 0.1, assuming homogeneous conditions. Technical solutions are reasonably simple, although they may be costly. A possible solution
is that on the upstream side, or near the upstream side, the resistance to flow is enlarged, for instance by putting a blanket of clay on top of the
soil, or into it. Another class of solutions is to apply a drainage at the downstream side, for instance by the installation of a gravel pack near
the expected outflow boundary. In the case of Figure 10.2 a perfect solution would be to make the sheet pile wall longer, so that it reaches into
the impermeable layer. A large dam built upon a permeable soil should be protected by an impermeable core or sheet pile wall, and a drain at
the downstream side. The large costs of these measures are easily justified when compared to the cost of loosing the dam.
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Problem 10.1 Sketch a flow net for the situation shown in Figure 8.7, and calculate the total discharge. Compare the result with the estimate made at
the end of that chapter.

Problem 10.2 A building pit in a lake is being constructed, using a sheet pile wall sur- ] T
rounding the building pit. Inside the wall the water level is lowered (by pumping) to the
level of the ground surface. Outside the sheet pile wall the water level is 5 m higher. It
has been installed to a depth of 10 m below ground surface. The thickness of the soil layer
is 20 m. Sketch a flow net, and determine the maximum gradient inside the sheet pile
wall.

Problem 10.3 Suppose that in a case as considered in the previous problem the soil consists
of 1 m clay on top of a thick layer of homogeneous sand. In that case the capacity of the pumps will be much smaller, which is very favorable. Are there
any risks involved?



Chapter 11

FLOW TOWARDS WELLS

For the theoretical analysis of groundwater flow several computational methods are available, analytical or numerical. Studying groundwater flow

is of great importance for soil mechanics problems, because the influence of the groundwater on the behavior of a soil structure is very large. Many

dramatic accidents have been caused by higher pore water pres-

— Qo sures than expected. For this reason the study of groundwater

flow requires special attention, much more than given in the few

chapters of this book. In this chapter one more example will be

presented: the flow caused by wells. Direct applications include

the drainage of a building pit, or the production of drinking
water by a system of wells.

The solutions to be given here apply to a homogeneous sand
layer, confined between two impermeable clay layers, see Fig-
ure 11.1. This is denoted as a confined aquifer, assuming that
the pressure in the groundwater is sufficiently large to ensure
Figure 11.1: Single well in aquifer. complete saturation in the sand layer.

In this case the groundwater flows in a horizontal plane. In this plane the cartesian coordinate axes are denoted as z and y. The groundwater
flow is described by Darcy’s law in the horizontal plane,

oh
x = 7k77
¢ oz
(11.1)
oh
— 7]{:7
qy Ay )
and the continuity equation for an element in the horizontal plane,
9qs | Oqy
— =0. 11.2
ox y ( )
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It now follows, if it is assumed that the hydraulic conductivity k is constant, that the partial differential equation governing the flow is

o0

5 = (11.3)

This is again Laplace’s equation, but this time in a horizontal plane.

11.1 A single well

The first problem to be considered concerns the flow in a circular region, having a radius R, to a well in the center of the circle. This is an
important basic problem of groundwater mechanics. The boundary conditions are that at the outer boundary (for r = R) the groundwater head
is fixed: h = hg, and that at the inner boundary, the center of the circle, a discharge Qg is being extracted from the soil.
It is postulated that the solution of this problem is 0
0 r

orkd MR
where Qg is the discharge of the well, k the hydraulic conductivity of the soil, H the thickness of the layer, hy the value of the given head at the
outer boundary (r = R), and r is a polar coordinate,

r=y/x2+y? (11.5)

That the expression (11.4) indeed satisfies the differential equation (11.3) can be verified by substitution of this solution into the differential
equation. The solution also satisfies the boundary condition at the outer boundary, because for r = R the value of the logarithm is 0 (In(1) = 0).
The boundary condition at the inner boundary can be verified by first differentiating the solution (11.4) with respect to r. This gives

h=hy+

(11.4)

dh _ Qy
dr — 2mkHr (11.6)
This means that the specific discharge in r-direction is, using Darcy’s law,
dh Qo
r=—k—=— . 11.7
¢ dr 2nHr ( )

The total amount of water flowing through a cylinder of radius r and height H is obtained by multiplication of the specific discharge g, by the

area 2mrH of such a cylinder,
dh
Q =2nrHgq, = fZWkHrd— =—Qo (11.8)
r
This quantity appears to be constant, independent of r, which is in agreement with the continuity principle. It appears that through every

cylinder, whatever the radius, an amount of water —(@)y is flowing in the positive r-direction. That means that an amount of water +@)q is
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flowing towards the center of the circle. That is precisely the required boundary condition, and it can be conclude that the solution satisfies all
conditions, and therefore must be correct.

The flow rate very close to the center is very large, because there the discharge Q9 must flow through a very small surface area. At the
outer boundary the area is very large, so that there the flow rate will be very small, and therefore the gradient will also be small. This makes it
plausible that the precise form of the outer boundary is not so important. The solution (11.4) can also be used, at least as a first approximation,
for a well in a region that is not precisely circular, for instance a square. Such a square can then be approximated by a circle, taking care that
the total circumference is equal to the circumference of the square.

It may be noted that everywhere in the aquifer r < R. Then the logarithm in eq. (11.4) is negative, and therefore h < hg, as could be
expected. This confirms that by pumping the groundwater head will indeed be lowered.

11.2 Systems of wells

It is important to note that the differential equation (11.3) is linear, which
means that solutions can be added. This is the superposition principle. Us-
ing this principle solutions can be obtained for a system of many wells, for
instance for a drainage system. All wells should be operating near the center
of a large area, the outer boundary of which is schematized to a circle of
radius R. For a system of n wells the solution is

Qi (T
- In(L). 11,
= ho +j§ onkl "R (1L9)

Here @; is the discharge of well j, and r; is the distance to that well. The
influence of all wells has simply been added to obtain the solution. The
discharge @); may be positive if the well extracts water, or negative, for a
recharging well. At the outer boundary of the system all the values r; are
approximately equal to R, the radius of the area, provided that the wells are
all located in the vicinity of the center of that area. Then all logarithms are
0, and the solution satisfies the condition that h = hy at the outer boundary,
at least approximately.
In Figure 11.2 the potential lines and the stream lines have been drawn
Figure 11.2: Sink and source. for the case of a system of a single well and a single recharge well in an
infinite field, assuming that the discharges of the well and the recharge well are equal. In mathematical physics these singularities are often
denoted as a sink and a source.
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Problem 11.1 For a system of air conditioning water is extracted from a layer of 10 m thickness, having a hydraulic conductivity of 1 m/d. The discharge
is 50 m3/d. At a distance of 100 m the water is being injected into the same layer by a recharge well. What is the influence on the groundwater head in
the point just between the two wells?

Problem 11.2 A well in a circular area of radius 1000 m appears to lead to a lowering of the groundwater table (a drawdown) of 1 m at a distance of
10 m from the well. What is the drawdown at a distance of 100 m?

Problem 11.3 Draw a sketch of the solution (11.4) for values of r/R from 0.001 to 1. The value 0.001 applies to the value r = r.,, where r, is the radius
of the tube through which the water is being produced. Assume that ho = 20 m, H = 10 m, and Qo/27kH = 1 m. What is the limiting value of the head
when the radius of the tube is very small, r,, — 07

Problem 11.4 If R — oo the solution (11.4) can not be used because In(0) = —co. Does this mean that in a very large island (Australia) no groundwater
can be produced?



Chapter 12

STRESS STRAIN RELATIONS

As stated in previous chapters, the deformations of soils are determined by the effective stresses, which are a measure for the contact forces
transmitted between the particles. The soil deformations are a consequence of the local displacements at the level of individual particles. In this
chapter some of the main aspects of these deformations will be discussed, and this will lead to qualitative properties of the relations between
stress and strain. In later chapters these relations will be formulated in a quantitative sense.

12.1 Compression and distorsion

In the contact point of two particles a normal force and a shear force can be transmitted, see Figure 12.1. The normal force can only be a compres-
sive force. Tension can not be transmitted, unless the soil particles are glued together. Such soils do exist (e.g. calcareous soils near the coast of
Brazil or Australia), but they are not considered here. The magnitude of the shear force that can be
transmitted depends upon the magnitude of the normal force. It can be expected that if the ratio of
shear force and normal force exceeds a certain value (the friction coefficient of the material of the par-
ticles), the particles will start to slide over each other, which will lead to relatively large deformations.
The deformations of the particles caused by their compression can be disregarded compared to these

sliding deformations. The particles might as well be considered as incompressible.
This can be further clarified by comparing the usual deformations of soils with the possible elastic
deformations of the individual particles. Consider a layer of soil of a normal thickness, say 20 m, that
Figure 12.1: Particle contact. is being loaded by a surcharge of 5 m dry sand. The additional stress caused by the weight of the sand
is about 100 kN/m?, or 0.1 MPa. Deformations of the order of magnitude of 0.1 % or even 1 % are
not uncommon for soils. For a layer of 20 m thickness a deformation of 0.1 % means a settlement of 2 cm, and that is quite normal. Many
soil bodies show such settlements, or even much more, for instance when a new embankment has been built. Settlements of 20 cm may well be
observed, corresponding to a strain of 1 %. If one writes, as a first approximation ¢ = Fe, a stress of 0.1 Mpa and a strain of 0.1 % suggests
a deformation modulus E = 100 MPa. For a strain of 1 % this would be E ~ 10 MPa. The modulus of elasticity of the particle material can
be found in an encyclopedia or handbook. This gives about 20 GPa, about one tenth of the modulus of elasticity of steel, and about the same
order of magnitude as concrete. That value is a factor 200 or 2000 as large as the value of the soil body as a whole. It can be concluded that
the deformations of soils are not caused by deformations of the individual particles, but rather by a rearrangement of the system of particles,

with the particles rolling and sliding with respect to each other.

On the basis of this principle many aspects of the behavior of soil can be explained. It can, for instance, be expected that there will

7
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be a large difference between the behavior in compression and the behavior in shear.
l Compression is a deformation of an element in which the volume is changing, but the
shape remains the same. In pure compression the deformation in all directions is equal,
e e see Figure 12.2. It can be expected that such compression will occur if a soil element is
loaded isotropically, i.e. by a uniform normal stress in all directions, and no shear stresses.
In Figure 12.2 the load has been indicated on the original element, in the left part of the
T figure.

With such a type of loading, there will be little cause for a change of direction of the
forces in the particle contacts. Because of the irregular character of the grain skeleton there
may be local shear forces, but these need not to increase to carry increasing compressive
forces. If all forces, normal forces and shear forces, increase proportionally, an ever larger compressive external pressure can be transmitted. If
the particles were completely incompressible there would be no deformation in that case. In reality the particles do have a small compressibility,
and the forces transmitted by the particle contacts are not distributed homogeneously. For these reasons there may be some local sliding and
rolling even in pure compression. But it is to be expected that the soil will react much stiffer in compression than in shear when shear stresses
are applied. When external shear stresses are applied to a soil mass, the local shear forces must increase on the average, and this will lead
to considerable deformations. In tests it appears that soils are indeed relatively stiff under pure compression, at least when compared to the
stiffness in shear. When compared to materials such as steel, soils are highly deformable, even in pure compression.

It can also be expected that in a continuing process of compression the particles will
00 come closer together, increasing the number of contacts, and enlarging the areas of contact.
This suggests that a soil will become gradually stiffer when compressed. Compression
means that the porosity decreases, and it can be expected that a soil with a smaller
porosity will be stiffer than the same assembly of particles in a structure with a larger
porosity. It can be concluded that in compression a relation between stress and strain
can be expected as shown in Figure 12.3. The quantity o( is the normal stress, acting in
all three directions. This is often denoted as the isotropic stress. The quantity €y, is the
volume strain, the relative change of volume (the change of the volume divided by the
original volume).

Figure 12.2: Compression.

—Evol AV
Evol = -
T

Because the volume will, of course, decrease when the isotropic stress increases the quan-

tity on the horizontal axis in Figure 12.3 has been indicated as —ey,).
It may be concluded that the stiffness of soils will increase with continuing compression, or with increasing all round stress. Because in the
field the stresses usually increase with depth, this means that in nature it can be expected that the stiffness of soils increases with depth. All

(12.1)
Figure 12.3: Stiffness in compression.
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these effects are indeed observed in nature, and in the laboratory.

B

Figure 12.4: Distorsion.

Quite a different type of loading is pure distorsion, or pure shear: a change of shape at
constant volume, see Figure 12.4. When a soil is loaded by increasing shear stresses it can
be expected that in the contact points between the particles the shear forces will increase,
whereas the normal forces may remain the same, on the average. This leads to a tendency
for sliding in the contact points, and thus there will be considerable deformations. It
is even possible that the sliding in one contact point leads to a larger shear force in a
neighboring contact point, and this may slide in its turn. All this means that there is
more cause for deformation than in compression. There may even be a limit to the shear

force that can be transmitted, because in each contact point the ratio of shear force to normal force can not be larger than the friction angle of

the particle material.

During distorsion of a soil a relation between stresses and strains as shown in Figure 12.5 can
be expected. In this figure the quantity on the vertical axis is a shear stress, indicated as 7,
divided by the isotropic stress og. The idea is that the friction character of the basic mechanism
of sliding in the contact points will lead to a maximum for the ratio of shearing force to normal
force, and that as a consequence for the limiting state of shear stress the determining quantity
will be the ratio of average shear stress to the isotropic stress. Tests on dry sand confirm that
large deformations, and possible failure, at higher isotropic stresses indeed require proportionally
higher shear stresses. By plotting the relative shear stress (i.e. 7;; divided by the isotropic stress
00) against the shear deformation, the results of various tests, at different average stress levels,
can be represented by a single curve. It should be noted that this is a first approximation only,
but it is much better than simply plotting the shear stress against the shear deformation. In
daily life the proportionality of maximum shear stress to isotropic can be verified by trying to
deform a package of coffee, sealed under vacuum, and to compare that with the deformability of
the same package when the seal has been broken.

Tij /o0

_Eij

Figure 12.5: Stiffness in distorsion.

l

T

Figure 12.6: Distorsion.

It must be noted that Figure 12.4 represents only one possible form of distorsion. A
similar deformation can, of course, also occur in the two other planes of a three dimen-
sional soil sample. Moreover, the definition of distorsion as change of shape at constant
volume means that a deformation in which the width of a sample increases and the height
decreases, is also a form of distorsion, see Figure 12.6, because in this case the volume
is also constant. That there is no fundamental difference with the shear deformation of
Figure 12.4 can be seen by connecting the centers of the four sides in Figure 12.6, before
and after the deformation. It will appear that again a square is deformed into a diamond,
just as in Figure 12.4, but rotated over an angle of 45°.
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Conclusions

In the relations between stresses and strains, as described above, it is of great importance to distinguish between compression and distorsion.
The behavior in these two modes of deformation is completely different. The deformations in distorsion (or shear) are usually much larger than
the deformations in compression. Also, in compression the material becomes gradually stiffer, whereas in shear it becomes gradually softer.

12.2 Unloading and reloading

Because the deformations of soils are mostly due to changes in the particle assembly, by
7ij/ 00 sliding and rolling of particles, it can be expected that after unloading a soil will not
return to its original state. Sliding of particles with respect to each other is an irreversible
process, in which mechanical energy is dissipated, into heat. It is to be expected that
| after a full cycle of loading and unloading of a soil a permanent deformation is observed.
/ Tests indeed confirm this.

When reloading a soil there is probably less occasion for further sliding of the particles,
so that the soil will be much stiffer in reloading than it was in the first loading (virgin
loading). The behavior in unloading and reloading, below the maximum load sustained

€ij before, often seems practically elastic, see Figure 12.7, although there usually is some
additional plastic deformation after each cycle. In the figure this is illustrated for shear
Figure 12.7: Unloading and reloading. loading.

A good example of irreversible deformations of soils from engineering practice is the deformation of guard rails along highways. After a
collision the guard rail will have been deformed, and has absorbed the kinetic energy of the vehicle. The energy is dissipated by the rotation of the
foundation pile through the soil. After removal of the damaged vehicle the rail will not
7ij /00 rotate back to its original position, but it can easily be restored by pulling it back. That
is the principle of the structure: kinetic energy is dissipated into heat, by the plastic
deformation of the soil. That seems much better than to transfer the kinetic energy of
the vehicle into damage of the vehicle and its passengers. The dissipated energy can be
observed in the figure as the area enclosed by the branches of loading and unloading,
respectively.
It is interesting to note that after unloading and subsequent reloading, the deforma-
/ tions again are much larger if the stresses are increased beyond the previous maximum
stress, see Figure 12.8. This is of great practical importance when a soil layer that in
earlier times has been loaded and unloaded, is loaded again. If the final load is higher
Figure 12.8: Preload. than the maximum load experienced before, a relation such as indicated in Figure 12.8

Eij
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may be observed, with the discontinuity in the curve indicating the level of the previous maximum load, the preload. The soil is said to be
overconsolidated. As long as the stresses remain below the preconsolidation load the soil is reasonably stiff, but beyond the preconsolidation
load the behavior will be much softer. This type of behavior is often observed in soils that have been covered in earlier times (an ice age) by a
thick layer of ice.

12.3 Dilatancy

One of the most characteristic phenomena in granular soils is dilatancy, first reported by Reynolds around 1885. Dilatancy is the volume
increase that may occur during shear. In most engineering materials (such as metals) a volume change
is produced by an all round (isotropic) stress, and shear deformations are produced by shear stresses,
and these two types of response are independent. The mechanical behavior of soils is more complicated.
This can most conveniently be illustrated by considering a densely packed sand, see Figure 12.9. Each
particle is well packed in the space formed by its neighbors. When such a soil is made to shear, by

Figure 12.9: Densely packed sand. shear stresses, the only possible mode of deformation is when the particles slide and roll over each
other, thereby creating some moving space between them. Such a dense material is denoted as dilatant.

Dilatancy may have some unexpected results, especially when the soil is saturated
with water. A densely packed sand loaded by shear stresses can only sustain these shear
stresses by a shear deformation. Through dilatancy this can only occur if it is accompanied
by a volume increase, i.e. by an increase of the porosity. In a saturated soil this means
that water must be attracted to fill the additional pore space. This phenomenon can be
observed on the beach when walking on the sand in the area flooded by the waves. The
soil surrounding the foot may be dried by the suction of the soil next to and below the
foot, which must carry the load, see Figure 12.10. For sand at greater depth, for instance
the sand below the foundation of an offshore platform, the water needed to fill the pore
space can not be attracted in a short time, and this means that an under pressure in the
water is being produced. After a certain time this will disappear, when sufficient amounts
of water have been supplied. For short values of time the soil is almost incompressible,
because it takes time for the water to be supplied, and the shear deformation will lead to Figure 12.10: Dilatancy on the beach.

a decrease of the pore water pressure. This will be accompanied by an increase of the effective stress, as the total stress remains approximately
constant, because the total load must be carried. The soil appears to be very stiff and strong, at least for short values of time. That may be
interpreted as a positive effect, but it should be noted that the effect disappears at later times, when the water has flowed into the pores.

The phenomenon that in densely packed saturated sand the effective stresses tend to increase during shear is of great importance for the
dredging process. When cutting densely packed strata of sand under water an under pressure is generated in the pore water, and this will lead
to increasing effective stresses. This increases the resistance of the sand to cutting. A cutting dredger may have great difficulty in removing the
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sand. The effect can be avoided when the velocity of the cutting process is very small, but then the production is also small. Large production
velocities will require large cutting forces.

The reverse effect can occur in case of very loosely packed sand, see Figure 12.11. When an assembly of particles in a very loose packing is being
loaded by shear stresses, there will be a tendency for volume decrease. This is called contractancy. The assembly may collapse, as a kind of card
house structure. Again the effect is most dramatic when the soil is saturated with water.
The volume decrease means that there is less space available for the pore water. This has
to flow out of the soil, but that takes some time, and in the case of very rapid loading
the tendency for volume decrease will lead to an increasing pore pressure in the water.
The effective stresses will decrease, and the soil will become weaker and softer. It can

Figure 12.11: Loosely packed sand. even happen that the effective stresses are reduced to zero, so that the soil looses all of its
coherence. This is called liquefaction of the soil. The soil then behaves as a heavy fluid
(quick sand), having a volumetric weight about twice as large as water. A person will sink into the liquefied soil, to the waist.

The phenomenon of increasing pore pressures, caused by contractancy of loose soils, can have serious consequences for the stability of the
foundation of structures. For example, the sand in the estuaries in the South West of the
Netherlands is loosely packed because of the ever continuing process of erosion by tidal
currents and deposition of the sand at the turning of the tide. For the construction of
the storm surge barrier in the Eastern Scheldt the soil has been densified by vibration
before the structure could safely be built upon it. For this purpose a special vessel was
constructed, the Mytilus, see Figure 12.12, containing a row of vibrating needles. Other
examples are the soils in certain areas in Japan, for instance the soil in the artificial Port
Island in the bay near Kobe. During the earthquake of 1995 the loosely packed sand
liquefied, causing great damage to the quay walls and to many buildings. In the area
where the soil had previously been densified the damage was much less. For the Chek Lap
Kok airport of Hong Kong, an artificial sand island has been constructed in the sea, and
to prevent damage by earthquakes the soil has been densified by vibration, at large cost.

Figure 12.12: Mytilus.

It can be concluded that the density of granular soils can be of great importance for
the mechanical behavior, especially when saturated with water, and especially for short term effects. Densely packed sand will have a tendency
to expand (dilatancy), and loosely packed sand will have a tendency to contract (contractancy). At continuing deformations both dense and
loose sand will tend towards a state of average density, sometimes denoted as the critical density. This is not a uniquely defined value of the
density, however, as it also depends upon the isotropic stress. At high stresses the critical density is somewhat smaller than at small stress. The
branch of soil mechanics studying these relations is critical state soil mechanics.

It may be interesting to mention that during cyclic loads soils usually tend to contract after each cycle, whatever the original density is. It
seems that in a full cycle of loading a few particles may find a more dense packing than before, resulting in a continuing volume decrease. The
effect becomes smaller and smaller if the number of cycles increases, but it seems to continue practically forever. It can be compared to the
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situation in a full train, where there seems to be no limit to the number of passengers that can be transported. By some more pressing a full
train can always accommodate another passenger. The cyclic effect is of great importance for the foundation of offshore structures, which may
be loaded by a large number of wave loads. During a severe storm each wave may generate a small densification, or a small increase of the pore
pressure, if the permeability of the soil is small. After a great many of these wave loads the build up of pore pressures may be so large that the
stability of the structure is endangered.

Example 12.1

In road building one may observe that before the final layer of the pavement is
placed heavy equipment, such as a road roller, is being used to further densify the
soil, see Figure 12.13.

This makes good sense, taking into account the influence of a pre-loading on
the stiffness of a soil, as shown in Figure 12.8. Due to the passage of the heavy
roller the soil will deform, and some additional soil may be needed to raise the top
surface to the desired level. The result will be that when the road is completed the
surface deformations will remain small. The initial cost is larger, but maintenance
costs will be smaller.

It may be noted that the stresses near the soil surface can be further in-
creased by constructing picks on the surface of the roller, as shown in the fig-

ure. Figure 12.13: A road roller.

Example 12.2

A rubber ball contains saturated sand, and water reaching into the neck of the glass tube inserted
into the ball, above the sand. When squeezing the ball between two fingers, the water level
appears to go down.

This phenomenon, which is often used in geotechnical laboratories to demonstrate the special
properties of soils, can be explained by assuming that the initial density of the sand is very high
(if this not the case the sand may be densified before the demonstration by knocking the ball
several times onto the table, preferably before the arrival of the spectators). The squeezing of the
sand results in a shear deformation, and in this dilatant material this is accompanied by a volume
Figure 12.14: Sand in a rubber ball. expansion of the assembly of granular particles. This means that the pore volume increases, and

thus water is drawn into the ball from the glass tube.
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Problem 12.1 A soil sample is loaded in a laboratory test, by an isotropic stress. If the stress is increased from 100 kPa to 200 kPa, the volume decrease
is 0.1 %. Suppose that the stress is further increased to 300 kPa. Will the additional volume decrease then be smaller than, larger than, or equal to 0.1 %?

Problem 12.2 A part of a guard rail along a highway has been tested by pulling sideways. A lateral force of 10 kN has been found to lead to a lateral
displacement of 1 cm. The force is next increased to 20 kN. Will the additional displacement then be more than or less than 1 cm?

Problem 12.3 Is the sand used in the experiment shown in Figure 12.14 suitable for the foundation of a bridge pier?

Problem 12.4 In a laboratory quick sand is being produced in a large cylindrical tank, by pumping water into it from below, while the excess of water
flows over the top of the tank, back into the reservoir. How deep will a student sink into the fluidized mixture of sand and water?



Chapter 13

TANGENT-MODULI

The difference in soil behavior in compression and in shear suggests to separate the stresses and deformations into two parts, one describing
compression, and another describing shear. This will be presented in this chapter. Dilatancy will be disregarded, at least initially.

13.1 Strain and stress

The components of the displacement vector will be denoted by u,, u, and u.. If these displacements are not constant throughout the field there

Figure 13.1: Strains.

will be deformations, or strains. In Figure 13.1 the strains in the
x, y-plane are shown.

The change of length of an element of original length Ax, divided
by that original length, is the horizontal strain ,,. This strain can
be expressed into the displacement difference, see Figure 13.1, by

Exx = Oy /0.

The change of length of an element of original length Ay, divided by
that original length, is the vertical strain €,,. Its definition in terms
of the displacement is, see Figure 13.1,

Eyy = Ouy /0y.

Because u, can increase in y-direction, and u, in 2z-direction, the right
angle in the lower left corner of the element may become somewhat
smaller. One half of this decrease is denoted as the shear strain ey,

Epy = %(8uz/8y + Ju, /0x).

Similar strains may occur in the other planes, of course, with similar definitions.
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In the general three dimensional case the definitions of the strain components are

_ Oug a1 Ouy, %
fre = Thy 8”_2(831 Oz )
Ouy 1,0uy  Ou,
_ Ouy _ 19y 13.1
Eyy ay ’ Eyz 2( az + ay )7 ( 3 )
_ Ou, _l(auz_i_@ugj)
Y 22 = 2\ 0z "

All derivatives, Qu,/0x, du, /Oy, etc., are assumed to be small compared to 1. Then the strains are also small compared to 1. Even in soils, in
which considerable deformations may occur, this is usually valid, at least as a first approximation.
The volume of an elementary small block may increase if its length increases, or it width increases, or its height increases. The total volume

strain is the sum of the strains in the three coordinate directions,

AV
Evol = 7 =E€qq + Eyy + €2z (132)

This volume strain describes the compression of the material, if it is negative.
The remaining part of the strain tensor describes the distorsion. For this purpose the deviator strains are defined as

_ 1 _
€rxx = Exx — 3Evol, €xy = Exy,
_ 1 _
eyy = Eyy — 3Evol, ey> = Eyz, (13.3)
_ 1 _
€zz = E€zz — gsvola €zx = Ezx-
These deviator strains do not contain any volume change, because e, + eyy + €., = 0.
In a similar way deviator stresses can be defined,
Tez = Oza — O, Tzy = Ozxy;
Tyy = Oyy — 0, Tyz = Oyz, (13.4)
Toy =0z — O, Tzx = Ozg-
Here @ is the isotropic stress,
—_ 1
T = 5(000 +0oyy +0.2). (13.5)

The isotropic stress & is the average normal stress. In an isotropic material volume changes are determined primarily by changes of the isotropic
stress. This means that the volume strain e, is a function of the isotropic stress @ only.
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Even though this may seem almost trivial, for soils it is in general
not true, as it excludes dilatancy and contractancy. It is nevertheless
assumed here, as a first approximation.

The remaining part of the stress tensor, after subtraction of the
isotropic stress, see (13.4), consists of the deviator stresses. These
are responsible for the distorsion, i.e. changes in shape, at constant
volume.

There are many forms of distorsion: shear strains in the three
e directions, but also a positive normal strain in one direction and a

negative normal strain in a second direction, such that the volume
remains constant. Some of these possibilities are shown in Figure 13.2.

Figure 13.2: Distorsion. In the other three planes similar forms of distorsion may occur.

13.2 Linear elastic material

The simplest possible relation between stresses and strains in a deformable continuum is the linear elastic relation for an isotropic material.
This can be described by two positive constants, the compression modulus K and the shear modulus G. The compression modulus K gives the

relation between the volume strain and the isotropic stress,
T =—K ey (13.6)

The minus sign has been introduced because stresses are considered positive for compression, whereas strains are considered positive for extension.
This is the sign convention that is often used in soil mechanics, in contrast with the theoretically more balanced sign conventions of continuum
mechanics, in which stresses are considered positive for tension.

The shear modulus G (perhaps distorsion modulus would be a better word) gives the relation between the deviator strains and the deviator

stresses,
Tij = —2G e;j. (13.7)

Here ¢ and j can be all combinations of , y or 2, so that, for instance, 7,, = —2G €,y and 7,y = —2 G eyy. The factor 2 appears in the equations
for historical reasons.

In applied mechanics the relation between stresses and strains of an isotropic linear elastic material is usually described by Young’s modulus
E, and Poisson’s ratio v. The usual form of the equations for the normal strains then is

1
Exx = _E[U:rm - V(Uyy + Uzz)],
1
Eyy = _E[Uyy — (022 + 022)], (13.8)
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1
Ezz = _7[0-2'?: - V(O-ww + 0-1/"/)]

E

The minus sign has again been introduced to account for the sign convention for the stresses of soil mechanics.
It can easily be verified that the equations (13.8) are equivalent to (13.6) and (13.7) if

E
K= =5 (13.9)
E

For the description of compression and distorsion, which are so basically different in soil mechanics, the parameters K and G are more suitable
than F and v. In continuum mechanics they are sometimes preferred as well, for instance because it can be argued, on thermodynamical
grounds, that they both must be positive, K > 0 and G > 0.

13.3 A non-linear material

In the previous chapter it has been argued that soils are non-linear and non-elastic. Furthermore, soils are often not isotropic, because
during the formation of soil deposits it may be expected that there will be a difference between the direction of deposition (the vertical
direction) and the horizontal directions. As a simplification this anisotropy will be disregarded here, and the irreversible deformations due
to a difference in loading and unloading are also disregarded. The behavior in compression and distorsion will be considered separately, but
they will no longer be described by constant parameters. As a first improvement on the linear elastic model the modulus will be assumed

to be dependent upon the stresses. A non-linear relation between stresses and strains is shown schemat-
Tij A ically in Figure 13.3. For a small change in stress the tangent to the curve might be used. This means

*J that one could write, for the incremental volume change,

i AT = —K Acyol, (13.11)
—AE,’j

Similarly, for the incremental shear strain one could write

The parameters K and G in these equations are not constants, but they depend upon the initial stress,
as expressed by the location on the curve in Figure 13.3. These type of constants are denoted as tangent

Figure 13.3: Tangent modulus. moduli, to indicate that they actually represent the tangent to a non-linear curve. They depend upon
the initial stress, and perhaps also on some other physical quantities, such as time, or temperature. As mentioned in the previous chapter, it

—&ij
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can be expected that the value of K increases with an increasing value of the isotropic stress, see Figure 12.3. Many researchers have found,
from laboratory tests, that the stiffness of soils increases approximately linear with the initial stress, although others seem to have found that
the increase is not so strong, approximately proportional to the square root of the initial stress. If it is assumed that the stiffness in compression
indeed increases linearly with the initial stress, it follows that the stiffness in a homogeneous soil deposit will increase about linearly with depth.
This has also been confirmed by tests in the field, at least approximately.

For distorsion it can be expected that the shear modulus G will decrease if the shear stress increases. It may even tend towards zero when
the shear stress reaches its maximum possible value, see Figure 12.5.

It should be emphasized that a linearization with two tangent moduli K and G, dependent upon the initial stresses, can only be valid in case
of small stress increments. That is not an impractical restriction, as in many cases the initial stresses in a soil are already relatively large, because
of the weight of the material. It should also be mentioned, however, that many effects have been disregarded, such as anisotropy, irreversible
(plastic) deformations, creep and dilatancy. An elastic analysis using K and G, or E and v, at its best is merely a first approximate approach.
It may be quite valuable, however, as it may indicate the trend of the development of stresses. In the last decades of the 20*" century more
advanced non-linear methods of analysis have been developed, for instance using finite element modelling, that offer more realistic computations.

Example 13.1

Consult a Handbook of Physics, a Handbook of Engineering, or an Encyclopedia, and search for a chapter on Young’s modulus. Note that such a chapter
usually presents useful definitions of the quantities involved, and often also contains a table of values for a large number of materials, including construction
materials such as steel, concrete and wood. Some engineers from disciplines other than geotechnical engineering may be surprised that these tables do not
give values for soils such as sand or clay.

The reason for this is that the stiffness of soils depends upon the initial stress, as presented in this chapter and the previous one. Or, in other words,
Hooke’s law does not apply to soils. Only for small stress increments Hooke’s law and an appropriate value of Young’s modulus E may be used, with the
modulus practically proportional to the initial stress level.

Problem 13.1 A colleague in a foreign country reports that the Young’s modulus of a certain layer has been back-calculated from the deformations of
a stress increase due to a surcharge, from 20 kPa to 40 kPa. This modulus is given as £ = 2000 kPa. A new surcharge is being planned, from 40 kPa to
60 kPa, and your colleague (who is not a geotechnical engineer) asks your advice on the value of E to be used then. What is your suggestion?

Problem 13.2 A soil sample is being tested in the laboratory by cyclic shear stresses, of constant amplitude. In each cycle there are relatively large
shear strains. What do you expect for the volume change in the 100" cycle? And what would that mean for the value of Poisson’s ratio v?



Chapter 14

ONE-DIMENSIONAL COMPRESSION

In the previous chapters the deformation of soils has been separated into pure compression and pure shear. Pure compression is a change of
volume in the absence of any change of shape, whereas pure shear is a change of shape, at constant volume. Ideally laboratory tests should be of
constant shape or constant volume type, but that is not so simple. An ideal compression test would require isotropic loading of a sample, that
should be free to deform in all directions. Although tests on spherical samples are indeed possible, it is more common to perform a compression
test in which no horizontal deformation is allowed, by enclosing the sample in a rigid steel ring, and then deform the sample in vertical direction.
In such a test the deformation consists mainly of a change of volume, but some change of shape also occurs. The main mode of deformation is
compression, however.

14.1 Confined compression test

In the confined compression test, or oedometer test, a cylindrical soil sample is enclosed in a very stiff steel ring, and loaded through a porous plate

at the top, see Figure 14.1. The equipment is usually placed in a somewhat

l l l l l l l l l l l l l i l l l l l l larger container, filled with water. Pore water may be drained from the sample

through porous stones at the bottom and the top of the sample. The load is

usually applied by a dead weight pressing on the top of the sample. This load

can be increased in steps, by adding weights. The ring usually has a sharp
edge at its top, which enables to cut the sample from a larger soil body.

In this case there can be no horizontal deformations, by the confining ring,

] _ Eza = Eyy = 0. (14.1)
Figure 14.1: Confined compression test.
This means that the only non-zero strain is a vertical strain. The volume

strain will be equal to that strain,

Evol = € = Ez2. (142)

For convenience this strain will be denoted as €. The load of the sample is a vertical stress o, which will be denoted as o,

0=0,,. (14.3)
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When performing the test, it is observed, as expected, that the increase of vertical stress caused by a loading from say 10 kPa to 20 kPa leads to a
larger deformation than a loading from 20 kPa to 30 kPa. The sample becomes gradually stiffer, when
o/og the load increases. Often it is observed that an increase from 20 kPa to 40 kPa leads to the same
incremental deformation as an increase from 10 kPa to 20 kPa. And increasing the load from 40 kPa
100 to 80 kPa gives the same additional deformation. Each doubling of the load has about the same effect.
This suggests to plot the data on a semi-logarithmic scale, see Figure 14.2. In this figure log(c /o) has
been plotted against €, where oy denotes the initial stress. The test results appear to form a straight
o line, approximately, on this scale. The logarithmic relation between vertical stress and strain has been
10 = found first by Terzaghi, around 1930.
v It means that the test results can be described reasonably well by the formula

7 1 o
- = ——In(—). 14.4
1 c=—gh(Z) (14.4)

0 0.01 Using this formula each doubling of the load, i.e. loadings following the series 1,2,4,8,16,.. ., gives the
Figure 14.2: Results. same strain. The rel.ation (14.4) is often denoted as Terzaghi’s logarithmic formula. Its approximate
validity has been verified by many laboratory tests.
In engineering practice the formula is sometimes slightly modified by using the common logarithm (of base 10), rather than the natural
logarithm (of base e), perhaps because of the easy availability of semi-logarithmic paper on the basis of the common logarithm. The formula
then is

1 o
e=——-10 14.5
o los(2) (145)
Because log(z) = In(z)/2.3 the relation between the constants is
- C
Type of soil C C1o Cio = 23’ (14.6)
sand 50-500 | 20-200 or
silt 25-125 | 10-50
' C =23 x Cho. (14.7)
clay 10-100 | 4-40
The compression constants C' and C1g are dimensionless parameters. Some average values
peat 2-25 1-10 are shown in Table 14.1.

The large variation in the compressibility suggests that the table has only limited
value. The compression test is a simple test, however, and the constants can easily be
determined for a particular soil, in the laboratory. The circumstance that there are two forms of the formula, with a factor 2.3 between the

Table 14.1: Compression constants.
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values of the constants, means that great care must be taken that the same logarithm is being used by the laboratory and the consultant or the
design engineer.

The values in Table 14.1 refer to virgin loading, i.e. cases in which the load on the soil is larger than the previous maximum load. If the
soil is first loaded, then unloaded, and next is loaded again, the results, when plotted on a logarithmic scale for the stresses, are as shown in

o/oo a/oo
100 100
10 10
//
1 / —£ 1 —E
0 0.01 0 0.01

Figure 14.3: Loading, unloading, and cyclic loading.

Figure 14.3. Just as in loading, a straight line is obtained during the unloading branch of the test, but the stiffness is much larger, by a factor of
about 10. When a soil is loaded below its preconsolidation load the stress strain relation can best be described by a logarithmic formula similar
to the ones presented above, but using a coefficient A rather than C, where the values of A are about a factor 10 larger than the values given
in Table 14.1. Such large values can also be used in cyclic loading. A typical response curve for cyclic loading is shown in the right part of
Figure 14.3. After each full cycle there will be a small permanent deformation. When loading the soil beyond the previous maximum loading
the response is again much softer.

In some countries, such as the Scandinavian countries and the USA, the results of a confined compression test are described in a slightly different
form, using the void ratio e to express the deformation, rather than the strain €. The formula used is

e1—e=0C, log(aio), (14.8)

where e; represents the void ratio at the initial stress og. In this representation the test results also lead to a straight line, when using a logarithmic
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e scale for the stresses. The formula indicates that the void ratio decreases when the stress increases,
which corresponds to a compression of the soil. The coefficient C, is denoted as the compression indez.
A highly compressible soil will have a large value of C.. As seen before the behavior in unloading and
reloading is much stiffer. The compression index is then much smaller (by about a factor 10). Three
typical branches of the response are shown in Figure 14.4. The relationship shown in the figure is
K often denoted as an e — log(p) diagram, where the notation p has been used to indicate the effective
stress.

T To demonstrate that eq. (14.8) is in agreement with the formula (14.5), given before, it may be
noted that the strain € has been defined as ¢ = AV/V, where V is the volume of the soil. This can be
= expressed as V = (1+e)V,, where e is the void ratio, and V}, is the volume of the particles. Because the

0 o/o0  particle volume is constant (the particles are practically incompressible) it follows that AV = Ae V4,
1 10 100 so that

0.01

Figure 14.4: e — logp. Ae
(14.9)

Equation (14.8) therefore can also be written as

C.
=— log(— 14.10
c 1+€ Og(O'Q)7 ( )

Comparison with eq. (14.5) shows that the relation between C, and Cyg is

1 C
Cho 1 +e
It is of course unfortunate that different coefficients are being used to describe the same phenomenon. This can only be explained by the historical
developments in different parts of the world. It is especially inconvenient that in both formulas the constant is denoted by the character C, but
in one form it appears in the numerator, and in the other one in the denominator. A large value for Cy corresponds to a small value for C.. It
can be expected that the compression index C, will prevail in the future, as this has been standardized by ISO, the International Organization
for Standardization.
It may also be noted that in a well known model for elasto-plastic analysis of deformations of soils, the Cam clay model, developed at
Cambridge University, the compression of soils is described in yet another somewhat different form,

(14.11)

g

e=—-An(—). (14.12)

00

The difference with eq. (14.8) is that a natural logarithm is used rather than the common logarithm (the difference being a factor 2.3), and that
the deformation is expressed by the strain € rather than the void ratio e. The difference between these two quantities is a factor 1 + e.
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The logarithmic relations given in this chapter should not be considered as fundamental physical laws. Many non-linear phenomena in
physics produce a straight line when plotted on semi-logarithmic paper, or if that does not work, on double logarithmic paper. This may lead
to very useful formulas, but they need not have much fundamental meaning. The error may well be about 1 % to 5 %. It should be noted that
the approximation in Terzaghi’s logarithmic compression formula is of a different nature than the approximation in Newton’s laws. These last
are basic physical laws (even though Einstein has introduced a small correction). The logarithmic compression formula is not much more than
a convenient approximation of test results.

14.2 Elastic analysis

In a confined compression test on a sample of an isotropic linear elastic material, the lateral stresses are, using (13.8), and noting that
Eax = Eyy = 0,
v
Oap = Oyy = T Oz (14.13)

From the last equation of the system (13.8) it now follows that

(I1+v)(1-2v)

zz — — zz: 14.14
c E(l—v) ° (14.14)
When expressed into the constants K and G this can also be written as

0. = —(K + 2G)ess. (14.15)

The elastic coefficient for one dimensional confined compression appears to be K + %G . This is sometimes denoted as D, the constrained modulus,

E(l-v) 1-v
D=K+iG=—"""Y _3
3¢ (1+v)(1-2v) s (1+1/

). (14.16)

When v = 0 it follows that D = F; if v > 0: D > E. In the extreme case that v = % the value of D — oo. Such a material is indeed
incompressible.

Similar to the considerations in the previous chapter on tangent moduli the logarithmic relationship (14.4) may be approximated for small stress
increments. The relation can be linearized by differentiation. This gives
de 1

_— = - 14.1
do Co ( 7
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so that
Ao = —CoAe. (14.18)

Comparing egs. (14.15) and (14.18) it follows that for small incremental stresses and strains one write, approximately,
D=K+ 3G =Co. (14.19)

This means that the stiffness increases linearly with the stress, and that is in agreement with many test results (and with earlier remarks).

The formula (14.19) is of considerable value to estimate the elastic modulus of a soil. Many computational methods use the concepts and
equations of elasticity theory, even when it is acknowledged that soil is not a linear elastic material. On the basis of eq. (14.19) it is possible
to estimate an elastic ”constant”. For a layer of sand at 20 m depth, for instance, it can be estimated that the effective stress will be about
170 kPa (assuming that the soil above the sand is clay, and that the water table is very high). For sand the value of Cj is about 100, and thus
C =~ 230. This means that the elastic modulus is about 40000 kPa = 40 MPa. This is a useful first estimate of the elastic modulus for virgin
loading. As stated before, the soil will be about a factor 10 stiffer for cyclic loading. This means that for problems of wave propagation the
elastic modulus to be used may be about 400 MPa. It should be noted that these are only first estimates. The true values may be larger or
smaller by a factor 2, or more. And nothing can beat measuring the stiffness in a laboratory test or a field test, of course.

Example 14.1

In a confined compression test, see Figure 14.1, a soil sample of 2 cm thickness has been preloaded by a stress of 100 kPa. An additional load of 20 kPa
leads to a vertical displacement of 0.030 mm. Determine the value of the compression constant C1.

Solution

The formula to be applied is equation (14.5), where now oo = 100 kPa and ¢ = 120 kPa, so that log(o/o0) = 0.0792. The strain has been measured as
e = —0.030/20 = —0.0015. It follows that C1o = 52.8.

If the test is continued with a next loading step of 20 kPa, the additional vertical strain in that step will be ¢ = —1log(140/120)/C19 = —0.00127. This
means that the additional vertical displacement will be -0.025 mm.

The total strain after the two loading steps can also be calculated as e = —1og(140/100)/C10 = —0.00277, which is precisely the sum of the two values
in each step, as one would expect from a consistent theory. Mathematically speaking it is a consequence of the property of the logarithmic function that
log(ab) = log(a) + log(b).
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Problem 14.1 A clay layer of 4 m thickness is located below a sand layer of 10 m thickness. The volumetric weights are all 20 kN/m?, and the ground-
water table coincides with the soil surface. The compression constant of the clay is C1o = 20. Predict the settlement of the soil by compression of the clay
layer due to an additional load of 40 kPa.

Problem 14.2 A sand layer is located below a road construction of total weight 20 kPa. The sand has been densified by vibration before the road was
built. Estimate the order of magnitude of the elastic modulus of the soil that can be used for the analysis of traffic vibrations in the soil.

Problem 14.3 The book Soil Mechanics by Lambe & Whitman (Wiley, 1968) gives the value C. = 0.47 for the compression index of a certain clay, see
page 319. The void ratio, given in Figure E22.1 of that book, is about 0.95. Estimate C10, and verify whether this value is in agreement with Table 14.1.



Chapter 15

CONSOLIDATION

In the previous chapters it has been assumed that the deformation of a soil is uniquely determined by the stress. This means that a time dependent
response has been excluded. In reality the behavior is strongly dependent on time, however, especially for clay soils. This can be creep, but in a
saturated soil the deformations can also be retarded by the time
that it takes for the water to flow out of the soil. In compression
of a soil the porosity decreases, and as a result there is less space
available for the pore water. This pore water may be be expelled
from the soil, but in clays this may take a certain time, due to
the small permeability. The process is called consolidation. Its
basic equations are considered in this chapter. The analysis will
be restricted to one dimensional deformation, assuming that the
soil does not deform in lateral direction. It is also assumed that
the water can only flow in vertical direction. This will be the case during an oedometer test, or in the field, in case of a surcharge load over a
large area, see Figure 15.1.

Figure 15.1: Uniform load.

15.1 Differential equation

To simplify the analysis it will be assumed that the change in stress is small compared to the initial stress. In that case the stress-strain relation
may be linearized, using an elastic coefficient D = K + %G, see (14.19). The precise value of that coefficient depends upon the initial stress.
The relation between the increment of effective stress Ao’ and the increment of strain Ae can now be written as

Ao’ = —(K + 3G) Ae. (15.1)

In the remainder of this chapter the notation A will be omitted. Thus the increment of the effective stress will be denoted simply by ¢’, and
the increment of the strain by ¢,
o' =—(K+3G)e. (15.2)

Using stresses and strains with respect to some initial state is very common in soil mechanics. For the strains there is actually no other possibility.
Strains can only be measured with respect to some initial state, and in this initial state the soil is not stress free. Gravity is always acting,
and the stresses due to gravity have been developed gradually during geological history. The logical procedure is to regard the state of stress
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including the influence of the weight of the soil layers as a given initial state, and to regard all effects of engineering activity with respect to that
initial state. It should be noted that to obtain the true stresses in the field the initial stresses should be added to the incremental stresses.
In the analysis of consolidation it is customary to write equation (15.2) in its inverse form,

€= —myo, (15.3)

where m,, is denoted as the compressibility coefficient. If the incremental vertical total stress is denoted by o, and the incremental pore pressure
by p, then Terzaghi’s principle of effective stress is
o' =0—p. (15.4)

It follows from (15.3) that
e =—my(c —p). (15.5)

The total stress o is often known, as a function of time. Its value is determined by the load. Let it be assumed that initially o = 0, indicating no

additional load. During the application of the load the total stress ¢ is supposed to be increased

y 5 by a given amount, in a very short time interval, after which the total stress remains constant.

qy + %; dy The pore pressure may vary during t.hat period. To describe its generation and dissipation the
continuity of the water must be considered.

Consider an elementary volume V in the soil, see Figure 15.2. The volume of water is

p 04 d Vw = nV, where n is the porosity. The remaining volume, V,, = (1 —n)V is the total volume
il ij_ Dz ¢ of the particles. As usual, the particles are considered as incompressible. This means that the
volume V can change only if the porosity changes. This is possible only if the water in the pores
is compressed, or if water flows out of the element.
T(Jy The first possibility, a volume change by compression of the pore water, can be caused by a
l

change of the pore pressure p. It can be expected that the change of volume is proportional to
Figure 15.2: Outflow. the change of the pressure, and to the original volume, i.e.
AV = -6V, Ap = —nSV Ap, (15.6)

where (3 represents the compressibilit